|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpdfor2 | Structured version Visualization version GIF version | ||
| Description: Define or in terms of conditional logic operator. (Contributed by RP, 20-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| ifpdfor2 | ⊢ ((𝜑 ∨ 𝜓) ↔ if-(𝜑, 𝜑, 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.1 897 | . . 3 ⊢ (¬ 𝜑 ∨ 𝜑) | |
| 2 | 1 | biantrur 530 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ ((¬ 𝜑 ∨ 𝜑) ∧ (𝜑 ∨ 𝜓))) | 
| 3 | dfifp4 1067 | . 2 ⊢ (if-(𝜑, 𝜑, 𝜓) ↔ ((¬ 𝜑 ∨ 𝜑) ∧ (𝜑 ∨ 𝜓))) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ if-(𝜑, 𝜑, 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: ifporcor 43475 | 
| Copyright terms: Public domain | W3C validator |