Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imnand2 Structured version   Visualization version   GIF version

Theorem imnand2 34518
Description: An nand relation. (Contributed by Anthony Hart, 2-Sep-2011.)
Assertion
Ref Expression
imnand2 ((¬ 𝜑𝜓) ↔ ((𝜑𝜑) ⊼ (𝜓𝜓)))

Proof of Theorem imnand2
StepHypRef Expression
1 nannot 1491 . . . 4 𝜑 ↔ (𝜑𝜑))
2 nannot 1491 . . . 4 𝜓 ↔ (𝜓𝜓))
31, 2anbi12i 626 . . 3 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ((𝜑𝜑) ∧ (𝜓𝜓)))
43notbii 319 . 2 (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ ((𝜑𝜑) ∧ (𝜓𝜓)))
5 iman 401 . 2 ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
6 df-nan 1484 . 2 (((𝜑𝜑) ⊼ (𝜓𝜓)) ↔ ¬ ((𝜑𝜑) ∧ (𝜓𝜓)))
74, 5, 63bitr4i 302 1 ((¬ 𝜑𝜓) ↔ ((𝜑𝜑) ⊼ (𝜓𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wnan 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-nan 1484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator