|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imnand2 | Structured version Visualization version GIF version | ||
| Description: An → nand relation. (Contributed by Anthony Hart, 2-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| imnand2 | ⊢ ((¬ 𝜑 → 𝜓) ↔ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nannot 1499 | . . . 4 ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | |
| 2 | nannot 1499 | . . . 4 ⊢ (¬ 𝜓 ↔ (𝜓 ⊼ 𝜓)) | |
| 3 | 1, 2 | anbi12i 628 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓))) | 
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓))) | 
| 5 | iman 401 | . 2 ⊢ ((¬ 𝜑 → 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 6 | df-nan 1492 | . 2 ⊢ (((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)) ↔ ¬ ((𝜑 ⊼ 𝜑) ∧ (𝜓 ⊼ 𝜓))) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ ((¬ 𝜑 → 𝜓) ↔ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |