MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnot Structured version   Visualization version   GIF version

Theorem imnot 365
Description: If a proposition is false, then implying it is equivalent to being false. One of four theorems that can be used to simplify an implication (𝜑𝜓), the other ones being ax-1 6 (true consequent), pm2.21 123 (false antecedent), pm5.5 361 (true antecedent). (Contributed by Mario Carneiro, 26-Apr-2019.) (Proof shortened by Wolf Lammen, 26-May-2019.)
Assertion
Ref Expression
imnot 𝜓 → ((𝜑𝜓) ↔ ¬ 𝜑))

Proof of Theorem imnot
StepHypRef Expression
1 mtt 364 . 2 𝜓 → (¬ 𝜑 ↔ (𝜑𝜓)))
21bicomd 222 1 𝜓 → ((𝜑𝜓) ↔ ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  sup0riota  9154  ntrneikb  41593
  Copyright terms: Public domain W3C validator