Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneikb Structured version   Visualization version   GIF version

Theorem ntrneikb 39090
Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneikb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneikb
StepHypRef Expression
1 con34b 307 . . . . . . 7 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
21albii 1914 . . . . . 6 (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
3 19.21v 2034 . . . . . 6 (∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ (¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
4 nne 2941 . . . . . . 7 (¬ (𝑠𝑡) ≠ ∅ ↔ (𝑠𝑡) = ∅)
5 elin 3960 . . . . . . . . . . 11 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
65imbi1i 340 . . . . . . . . . 10 ((𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅))
7 noel 4085 . . . . . . . . . . 11 ¬ 𝑥 ∈ ∅
8 imnot 356 . . . . . . . . . . 11 𝑥 ∈ ∅ → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
97, 8ax-mp 5 . . . . . . . . . 10 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
106, 9bitr2i 267 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
1110albii 1914 . . . . . . . 8 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
12 dfss2 3751 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
13 ss0b 4137 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1411, 12, 133bitr2i 290 . . . . . . 7 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
154, 14imbi12i 341 . . . . . 6 ((¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
162, 3, 153bitrri 289 . . . . 5 (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))
17 ntrnei.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
18 ntrnei.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝒫 𝐵𝑂𝐵)
19 ntrnei.r . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝐹𝑁)
2017, 18, 19ntrneiiex 39072 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
21 elmapi 8086 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
2322ffvelrnda 6553 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2524elpwid 4329 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
2625sseld 3762 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
2726adantrd 485 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥𝐵))
2827imp 395 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → 𝑥𝐵)
29 biimt 351 . . . . . . . . . . 11 (𝑥𝐵 → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3130pm5.74da 838 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅))))
32 bi2.04 377 . . . . . . . . 9 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅)) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3331, 32syl6bb 278 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
3433albidv 2015 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
35 df-ral 3060 . . . . . . 7 (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3634, 35syl6bbr 280 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3719ad3antrrr 721 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
38 simpr 477 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
39 simpllr 793 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
4017, 18, 37, 38, 39ntrneiel 39077 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
41 simplr 785 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4217, 18, 37, 38, 41ntrneiel 39077 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4340, 42anbi12d 624 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
4443imbi1d 332 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4544ralbidva 3132 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4636, 45bitrd 270 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4716, 46syl5bb 274 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4847ralbidva 3132 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4948ralbidva 3132 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
50 alrot3 2202 . . . 4 (∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑠𝑡𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
51 3anrot 1122 . . . . . . 7 ((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) ↔ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵))
5251imbi1i 340 . . . . . 6 (((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5352albii 1914 . . . . 5 (∀𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
54532albii 1915 . . . 4 (∀𝑠𝑡𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5550, 54bitr2i 267 . . 3 (∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
56 r3al 3087 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
57 r3al 3087 . . 3 (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5855, 56, 573bitr4i 294 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅))
5949, 58syl6bb 278 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107  wal 1650   = wceq 1652  wcel 2155  wne 2937  wral 3055  {crab 3059  Vcvv 3350  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317   class class class wbr 4811  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  𝑚 cmap 8064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-map 8066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator