Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneikb Structured version   Visualization version   GIF version

Theorem ntrneikb 44107
Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneikb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneikb
StepHypRef Expression
1 con34b 316 . . . . . . 7 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
21albii 1819 . . . . . 6 (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
3 19.21v 1939 . . . . . 6 (∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ (¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
4 nne 2944 . . . . . . 7 (¬ (𝑠𝑡) ≠ ∅ ↔ (𝑠𝑡) = ∅)
5 elin 3967 . . . . . . . . . . 11 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
65imbi1i 349 . . . . . . . . . 10 ((𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅))
7 noel 4338 . . . . . . . . . . 11 ¬ 𝑥 ∈ ∅
8 imnot 365 . . . . . . . . . . 11 𝑥 ∈ ∅ → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
97, 8ax-mp 5 . . . . . . . . . 10 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
106, 9bitr2i 276 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
1110albii 1819 . . . . . . . 8 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
12 df-ss 3968 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
13 ss0b 4401 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1411, 12, 133bitr2i 299 . . . . . . 7 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
154, 14imbi12i 350 . . . . . 6 ((¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
162, 3, 153bitrri 298 . . . . 5 (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))
17 ntrnei.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
18 ntrnei.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝒫 𝐵𝑂𝐵)
19 ntrnei.r . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝐹𝑁)
2017, 18, 19ntrneiiex 44089 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
21 elmapi 8889 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
2322ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2524elpwid 4609 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
2625sseld 3982 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
2726adantrd 491 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥𝐵))
2827imp 406 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → 𝑥𝐵)
29 biimt 360 . . . . . . . . . . 11 (𝑥𝐵 → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3130pm5.74da 804 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅))))
32 bi2.04 387 . . . . . . . . 9 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅)) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3331, 32bitrdi 287 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
3433albidv 1920 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
35 df-ral 3062 . . . . . . 7 (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3634, 35bitr4di 289 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3719ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
38 simpr 484 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
39 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
4017, 18, 37, 38, 39ntrneiel 44094 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
41 simplr 769 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4217, 18, 37, 38, 41ntrneiel 44094 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4340, 42anbi12d 632 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
4443imbi1d 341 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4544ralbidva 3176 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4636, 45bitrd 279 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4716, 46bitrid 283 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4847ralbidva 3176 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4948ralbidva 3176 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
50 ralrot3 3293 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅))
5149, 50bitrdi 287 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator