Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneikb Structured version   Visualization version   GIF version

Theorem ntrneikb 41215
 Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneikb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneikb
StepHypRef Expression
1 con34b 319 . . . . . . 7 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
21albii 1821 . . . . . 6 (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
3 19.21v 1940 . . . . . 6 (∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ (¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
4 nne 2955 . . . . . . 7 (¬ (𝑠𝑡) ≠ ∅ ↔ (𝑠𝑡) = ∅)
5 elin 3876 . . . . . . . . . . 11 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
65imbi1i 353 . . . . . . . . . 10 ((𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅))
7 noel 4232 . . . . . . . . . . 11 ¬ 𝑥 ∈ ∅
8 imnot 369 . . . . . . . . . . 11 𝑥 ∈ ∅ → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
97, 8ax-mp 5 . . . . . . . . . 10 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
106, 9bitr2i 279 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
1110albii 1821 . . . . . . . 8 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
12 dfss2 3880 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
13 ss0b 4296 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1411, 12, 133bitr2i 302 . . . . . . 7 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
154, 14imbi12i 354 . . . . . 6 ((¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
162, 3, 153bitrri 301 . . . . 5 (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))
17 ntrnei.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
18 ntrnei.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝒫 𝐵𝑂𝐵)
19 ntrnei.r . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝐹𝑁)
2017, 18, 19ntrneiiex 41197 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
21 elmapi 8444 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
2322ffvelrnda 6848 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2524elpwid 4508 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
2625sseld 3893 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
2726adantrd 495 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥𝐵))
2827imp 410 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → 𝑥𝐵)
29 biimt 364 . . . . . . . . . . 11 (𝑥𝐵 → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3130pm5.74da 803 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅))))
32 bi2.04 392 . . . . . . . . 9 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅)) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3331, 32bitrdi 290 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
3433albidv 1921 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
35 df-ral 3075 . . . . . . 7 (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3634, 35bitr4di 292 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3719ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
38 simpr 488 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
39 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
4017, 18, 37, 38, 39ntrneiel 41202 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
41 simplr 768 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4217, 18, 37, 38, 41ntrneiel 41202 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4340, 42anbi12d 633 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
4443imbi1d 345 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4544ralbidva 3125 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4636, 45bitrd 282 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4716, 46syl5bb 286 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4847ralbidva 3125 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4948ralbidva 3125 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
50 ralrot3 3279 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅))
5149, 50bitrdi 290 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860  ∅c0 4227  𝒫 cpw 4497   class class class wbr 5036   ↦ cmpt 5116  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158   ↑m cmap 8422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-map 8424 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator