| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sup0riota | Structured version Visualization version GIF version | ||
| Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| sup0riota | ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 2 | 1 | supval2 9334 | . 2 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)))) |
| 3 | ral0 4461 | . . . . . 6 ⊢ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 | |
| 4 | 3 | biantrur 530 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) |
| 5 | rex0 4308 | . . . . . . 7 ⊢ ¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 | |
| 6 | imnot 365 | . . . . . . 7 ⊢ (¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥) |
| 8 | 7 | ralbii 3076 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| 9 | 4, 8 | bitr3i 277 | . . . 4 ⊢ ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑅 Or 𝐴 → ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| 11 | 10 | riotabidv 7300 | . 2 ⊢ (𝑅 Or 𝐴 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| 12 | 2, 11 | eqtrd 2765 | 1 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3045 ∃wrex 3054 ∅c0 4281 class class class wbr 5089 Or wor 5521 ℩crio 7297 supcsup 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-po 5522 df-so 5523 df-iota 6433 df-riota 7298 df-sup 9321 |
| This theorem is referenced by: sup0 9346 |
| Copyright terms: Public domain | W3C validator |