MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup0riota Structured version   Visualization version   GIF version

Theorem sup0riota 9455
Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup0riota (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem sup0riota
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
21supval2 9445 . 2 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))))
3 ral0 4504 . . . . . 6 𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦
43biantrur 530 . . . . 5 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)))
5 rex0 4349 . . . . . . 7 ¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧
6 imnot 365 . . . . . . 7 (¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥))
75, 6ax-mp 5 . . . . . 6 ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥)
87ralbii 3085 . . . . 5 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥)
94, 8bitr3i 277 . . . 4 ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥)
109a1i 11 . . 3 (𝑅 Or 𝐴 → ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1110riotabidv 7359 . 2 (𝑅 Or 𝐴 → (𝑥𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
122, 11eqtrd 2764 1 (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wral 3053  wrex 3062  c0 4314   class class class wbr 5138   Or wor 5577  crio 7356  supcsup 9430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-po 5578  df-so 5579  df-iota 6485  df-riota 7357  df-sup 9432
This theorem is referenced by:  sup0  9456
  Copyright terms: Public domain W3C validator