Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sup0riota | Structured version Visualization version GIF version |
Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
sup0riota | ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
2 | 1 | supval2 9214 | . 2 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)))) |
3 | ral0 4443 | . . . . . 6 ⊢ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 | |
4 | 3 | biantrur 531 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) |
5 | rex0 4291 | . . . . . . 7 ⊢ ¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 | |
6 | imnot 366 | . . . . . . 7 ⊢ (¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥)) | |
7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥) |
8 | 7 | ralbii 3092 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
9 | 4, 8 | bitr3i 276 | . . . 4 ⊢ ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑅 Or 𝐴 → ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
11 | 10 | riotabidv 7234 | . 2 ⊢ (𝑅 Or 𝐴 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
12 | 2, 11 | eqtrd 2778 | 1 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∀wral 3064 ∃wrex 3065 ∅c0 4256 class class class wbr 5074 Or wor 5502 ℩crio 7231 supcsup 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-po 5503 df-so 5504 df-iota 6391 df-riota 7232 df-sup 9201 |
This theorem is referenced by: sup0 9225 |
Copyright terms: Public domain | W3C validator |