| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sup0riota | Structured version Visualization version GIF version | ||
| Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| sup0riota | ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 2 | 1 | supval2 9472 | . 2 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)))) |
| 3 | ral0 4493 | . . . . . 6 ⊢ ∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 | |
| 4 | 3 | biantrur 530 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) |
| 5 | rex0 4340 | . . . . . . 7 ⊢ ¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 | |
| 6 | imnot 365 | . . . . . . 7 ⊢ (¬ ∃𝑧 ∈ ∅ 𝑦𝑅𝑧 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . 6 ⊢ ((𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ¬ 𝑦𝑅𝑥) |
| 8 | 7 | ralbii 3083 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| 9 | 4, 8 | bitr3i 277 | . . . 4 ⊢ ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑅 Or 𝐴 → ((∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| 11 | 10 | riotabidv 7369 | . 2 ⊢ (𝑅 Or 𝐴 → (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ ∅ ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ ∅ 𝑦𝑅𝑧))) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| 12 | 2, 11 | eqtrd 2771 | 1 ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3052 ∃wrex 3061 ∅c0 4313 class class class wbr 5124 Or wor 5565 ℩crio 7366 supcsup 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-po 5566 df-so 5567 df-iota 6489 df-riota 7367 df-sup 9459 |
| This theorem is referenced by: sup0 9484 |
| Copyright terms: Public domain | W3C validator |