|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.501 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm5.501 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.1im 263 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ↔ 𝜓))) | |
| 2 | biimp 215 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 2 | com12 32 | . 2 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) | 
| 4 | 1, 3 | impbid 212 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: ibib 367 ibibr 368 nbn2 370 pm5.18 381 biass 384 pm5.1 824 vn0 4345 sadadd2lem2 16487 isclo 23095 nrmmetd 24587 bj-bibibi 36587 onsupmaxb 43251 | 
| Copyright terms: Public domain | W3C validator |