MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.501 Structured version   Visualization version   GIF version

Theorem pm5.501 366
Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.501 (𝜑 → (𝜓 ↔ (𝜑𝜓)))

Proof of Theorem pm5.501
StepHypRef Expression
1 pm5.1im 262 . 2 (𝜑 → (𝜓 → (𝜑𝜓)))
2 biimp 214 . . 3 ((𝜑𝜓) → (𝜑𝜓))
32com12 32 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
41, 3impbid 211 1 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  ibib  367  ibibr  368  nbn2  370  pm5.18  382  biass  385  pm5.1  820  vn0  4269  sadadd2lem2  16085  isclo  22146  nrmmetd  23636  bj-bibibi  34695
  Copyright terms: Public domain W3C validator