| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2449 r19.35 3090 ceqsralv 3477 elabd2 3625 elabgt 3627 ralsng 4628 dffun8 6509 ordiso2 9401 ordtypelem7 9410 cantnf 9583 rankonidlem 9718 dfac12lem3 10034 dcomex 10335 indstr2 12822 dfgcd2 16454 lublecllem 18261 tsmsgsum 24052 tsmsres 24057 tsmsxplem1 24066 caucfil 25208 isarchiofld 33163 wl-nfimf1 37559 tendoeq2 40812 naddgeoa 43426 elmapintrab 43608 inintabd 43611 cnvcnvintabd 43632 cnvintabd 43635 relexp0eq 43733 ntrkbimka 44070 ntrk0kbimka 44071 pm10.52 44397 ichnfimlem 47493 paireqne 47541 |
| Copyright terms: Public domain | W3C validator |