| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2448 r19.35 3089 ceqsralv 3491 elabd2 3639 elabgt 3641 ralsng 4642 dffun8 6547 ordiso2 9475 ordtypelem7 9484 cantnf 9653 rankonidlem 9788 dfac12lem3 10106 dcomex 10407 indstr2 12893 dfgcd2 16523 lublecllem 18326 tsmsgsum 24033 tsmsres 24038 tsmsxplem1 24047 caucfil 25190 isarchiofld 33302 wl-nfimf1 37521 tendoeq2 40775 naddgeoa 43390 elmapintrab 43572 inintabd 43575 cnvcnvintabd 43596 cnvintabd 43599 relexp0eq 43697 ntrkbimka 44034 ntrk0kbimka 44035 pm10.52 44361 ichnfimlem 47468 paireqne 47516 |
| Copyright terms: Public domain | W3C validator |