| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2453 r19.35 3095 ceqsralv 3501 elabd2 3649 elabg 3655 ralsng 4651 dffun8 6564 ordiso2 9529 ordtypelem7 9538 cantnf 9707 rankonidlem 9842 dfac12lem3 10160 dcomex 10461 indstr2 12943 dfgcd2 16565 lublecllem 18370 tsmsgsum 24077 tsmsres 24082 tsmsxplem1 24091 caucfil 25235 isarchiofld 33339 wl-nfimf1 37544 tendoeq2 40793 naddgeoa 43418 elmapintrab 43600 inintabd 43603 cnvcnvintabd 43624 cnvintabd 43627 relexp0eq 43725 ntrkbimka 44062 ntrk0kbimka 44063 pm10.52 44389 ichnfimlem 47477 paireqne 47525 |
| Copyright terms: Public domain | W3C validator |