![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 353 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 215 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: imim21b 386 dvelimdf 2386 2sb6rfOLD 2421 elabgt 3570 sbceqal 3731 dffun8 6213 ordiso2 8772 ordtypelem7 8781 cantnf 8948 rankonidlem 9049 dfac12lem3 9363 dcomex 9665 indstr2 12139 dfgcd2 15748 lublecllem 17468 tsmsgsum 22465 tsmsres 22470 tsmsxplem1 22479 caucfil 23604 isarchiofld 30601 wl-nfimf1 34246 tendoeq2 37392 elmapintrab 39336 inintabd 39339 cnvcnvintabd 39360 cnvintabd 39363 relexp0eq 39447 ntrkbimka 39789 ntrk0kbimka 39790 pm10.52 40151 paireqne 43073 |
Copyright terms: Public domain | W3C validator |