| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2451 r19.35 3091 ceqsralv 3478 elabd2 3621 elabgt 3623 ralsng 4627 dffun8 6514 ordiso2 9408 ordtypelem7 9417 cantnf 9590 rankonidlem 9728 dfac12lem3 10044 dcomex 10345 indstr2 12827 dfgcd2 16459 lublecllem 18266 tsmsgsum 24055 tsmsres 24060 tsmsxplem1 24069 caucfil 25211 isarchiofld 33175 wl-nfimf1 37591 tendoeq2 40893 naddgeoa 43511 elmapintrab 43693 inintabd 43696 cnvcnvintabd 43717 cnvintabd 43720 relexp0eq 43818 ntrkbimka 44155 ntrk0kbimka 44156 pm10.52 44482 ichnfimlem 47587 paireqne 47635 |
| Copyright terms: Public domain | W3C validator |