![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2457 nfabdwOLD 2933 r19.35 3114 ceqsralv 3531 elabd2 3683 elabgtOLDOLD 3687 elabg 3690 sbceqalOLD 3871 ralsng 4697 dffun8 6606 ordiso2 9584 ordtypelem7 9593 cantnf 9762 rankonidlem 9897 dfac12lem3 10215 dcomex 10516 indstr2 12992 dfgcd2 16593 lublecllem 18430 tsmsgsum 24168 tsmsres 24173 tsmsxplem1 24182 caucfil 25336 isarchiofld 33312 wl-nfimf1 37480 tendoeq2 40731 naddgeoa 43356 elmapintrab 43538 inintabd 43541 cnvcnvintabd 43562 cnvintabd 43565 relexp0eq 43663 ntrkbimka 44000 ntrk0kbimka 44001 pm10.52 44334 ichnfimlem 47337 paireqne 47385 |
Copyright terms: Public domain | W3C validator |