| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2447 r19.35 3088 ceqsralv 3488 elabd2 3636 elabgt 3638 ralsng 4639 dffun8 6544 ordiso2 9468 ordtypelem7 9477 cantnf 9646 rankonidlem 9781 dfac12lem3 10099 dcomex 10400 indstr2 12886 dfgcd2 16516 lublecllem 18319 tsmsgsum 24026 tsmsres 24031 tsmsxplem1 24040 caucfil 25183 isarchiofld 33295 wl-nfimf1 37514 tendoeq2 40768 naddgeoa 43383 elmapintrab 43565 inintabd 43568 cnvcnvintabd 43589 cnvintabd 43592 relexp0eq 43690 ntrkbimka 44027 ntrk0kbimka 44028 pm10.52 44354 ichnfimlem 47464 paireqne 47512 |
| Copyright terms: Public domain | W3C validator |