Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 361 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 222 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.4 390 imim21b 395 dvelimdf 2449 nfabdwOLD 2931 ceqsalv 3467 ceqsralv 3469 elabd2 3601 elabgtOLD 3604 elabg 3607 sbceqalOLD 3783 ralsng 4609 dffun8 6462 ordiso2 9274 ordtypelem7 9283 cantnf 9451 rankonidlem 9586 dfac12lem3 9901 dcomex 10203 indstr2 12667 dfgcd2 16254 lublecllem 18078 tsmsgsum 23290 tsmsres 23295 tsmsxplem1 23304 caucfil 24447 isarchiofld 31516 wl-nfimf1 35685 tendoeq2 38788 elmapintrab 41184 inintabd 41187 cnvcnvintabd 41208 cnvintabd 41211 relexp0eq 41309 ntrkbimka 41648 ntrk0kbimka 41649 pm10.52 41983 ichnfimlem 44915 paireqne 44963 |
Copyright terms: Public domain | W3C validator |