Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version |
Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | 1 | bicomd 222 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: pm5.4 389 imim21b 394 dvelimdf 2449 nfabdwOLD 2930 ceqsalv 3457 ceqsralv 3459 elabd2 3594 elabgtOLD 3597 elabg 3600 sbceqalOLD 3779 ralsng 4606 dffun8 6446 ordiso2 9204 ordtypelem7 9213 cantnf 9381 rankonidlem 9517 dfac12lem3 9832 dcomex 10134 indstr2 12596 dfgcd2 16182 lublecllem 17993 tsmsgsum 23198 tsmsres 23203 tsmsxplem1 23212 caucfil 24352 isarchiofld 31418 wl-nfimf1 35612 tendoeq2 38715 elmapintrab 41073 inintabd 41076 cnvcnvintabd 41097 cnvintabd 41100 relexp0eq 41198 ntrkbimka 41537 ntrk0kbimka 41538 pm10.52 41872 ichnfimlem 44803 paireqne 44851 |
Copyright terms: Public domain | W3C validator |