| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.5 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.5 | ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt 360 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
| 2 | 1 | bicomd 223 | 1 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: pm5.4 388 imim21b 394 dvelimdf 2447 r19.35 3087 ceqsralv 3479 elabd2 3627 elabgt 3629 ralsng 4629 dffun8 6514 ordiso2 9426 ordtypelem7 9435 cantnf 9608 rankonidlem 9743 dfac12lem3 10059 dcomex 10360 indstr2 12846 dfgcd2 16475 lublecllem 18282 tsmsgsum 24042 tsmsres 24047 tsmsxplem1 24056 caucfil 25199 isarchiofld 33151 wl-nfimf1 37499 tendoeq2 40753 naddgeoa 43367 elmapintrab 43549 inintabd 43552 cnvcnvintabd 43573 cnvintabd 43576 relexp0eq 43674 ntrkbimka 44011 ntrk0kbimka 44012 pm10.52 44338 ichnfimlem 47448 paireqne 47496 |
| Copyright terms: Public domain | W3C validator |