| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.62 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.62 | ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor 853 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: ianor 983 rb-bijust 1749 frxp 8130 nosupprefixmo 27669 bnj1174 35039 cdleme0nex 40314 |
| Copyright terms: Public domain | W3C validator |