| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 0 → (𝑋 + 𝑥) = (𝑋 + 0)) |
| 2 | 1 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 0 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 0))) |
| 3 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 0 → (𝑌 + 𝑥) = (𝑌 + 0)) |
| 4 | 3 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 0 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 0))) |
| 5 | 2, 4 | breq12d 5155 |
. 2
⊢ (𝑥 = 0 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 0)) ≤ (!‘(𝑌 + 0)))) |
| 6 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
| 7 | 6 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 𝑦 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑦))) |
| 8 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑌 + 𝑥) = (𝑌 + 𝑦)) |
| 9 | 8 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 𝑦 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑦))) |
| 10 | 7, 9 | breq12d 5155 |
. 2
⊢ (𝑥 = 𝑦 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)))) |
| 11 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑋 + 𝑥) = (𝑋 + (𝑦 + 1))) |
| 12 | 11 | fveq2d 6909 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + (𝑦 + 1)))) |
| 13 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑌 + 𝑥) = (𝑌 + (𝑦 + 1))) |
| 14 | 13 | fveq2d 6909 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + (𝑦 + 1)))) |
| 15 | 12, 14 | breq12d 5155 |
. 2
⊢ (𝑥 = (𝑦 + 1) → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1))))) |
| 16 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑋 + 𝑥) = (𝑋 + 𝑁)) |
| 17 | 16 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 𝑁 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑁))) |
| 18 | | oveq2 7440 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑌 + 𝑥) = (𝑌 + 𝑁)) |
| 19 | 18 | fveq2d 6909 |
. . 3
⊢ (𝑥 = 𝑁 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑁))) |
| 20 | 17, 19 | breq12d 5155 |
. 2
⊢ (𝑥 = 𝑁 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))) |
| 21 | | facwordi 14329 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘𝑋) ≤
(!‘𝑌)) |
| 22 | | nn0cn 12538 |
. . . . . 6
⊢ (𝑋 ∈ ℕ0
→ 𝑋 ∈
ℂ) |
| 23 | | addrid 11442 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ ℕ0
→ (𝑋 + 0) = 𝑋) |
| 25 | 24 | fveq2d 6909 |
. . . 4
⊢ (𝑋 ∈ ℕ0
→ (!‘(𝑋 + 0)) =
(!‘𝑋)) |
| 26 | 25 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑋 + 0)) =
(!‘𝑋)) |
| 27 | | nn0cn 12538 |
. . . . . 6
⊢ (𝑌 ∈ ℕ0
→ 𝑌 ∈
ℂ) |
| 28 | | addrid 11442 |
. . . . . 6
⊢ (𝑌 ∈ ℂ → (𝑌 + 0) = 𝑌) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ (𝑌 ∈ ℕ0
→ (𝑌 + 0) = 𝑌) |
| 30 | 29 | fveq2d 6909 |
. . . 4
⊢ (𝑌 ∈ ℕ0
→ (!‘(𝑌 + 0)) =
(!‘𝑌)) |
| 31 | 30 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑌 + 0)) =
(!‘𝑌)) |
| 32 | 21, 26, 31 | 3brtr4d 5174 |
. 2
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑋 + 0)) ≤
(!‘(𝑌 +
0))) |
| 33 | | nn0cn 12538 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 34 | | ax-1cn 11214 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 35 | | addass 11243 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
| 36 | 34, 35 | mp3an3 1451 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
| 37 | 22, 33, 36 | syl2an 596 |
. . . . . 6
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
| 38 | 37 | fveq2d 6909 |
. . . . 5
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
| 39 | 38 | 3ad2antl1 1185 |
. . . 4
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
| 40 | 39 | adantr 480 |
. . 3
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
| 41 | | nn0addcl 12563 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑋 + 𝑦) ∈
ℕ0) |
| 42 | 41 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑋 + 𝑦) ∈
ℕ0) |
| 43 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ∈
ℕ0) |
| 44 | | nn0addcl 12563 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑌 + 𝑦) ∈
ℕ0) |
| 45 | 44 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑌 + 𝑦) ∈
ℕ0) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑌 + 𝑦) ∈
ℕ0) |
| 47 | | nn0re 12537 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℕ0
→ 𝑋 ∈
ℝ) |
| 48 | | nn0re 12537 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ ℕ0
→ 𝑌 ∈
ℝ) |
| 49 | | nn0re 12537 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
| 50 | | leadd1 11732 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 ≤ 𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦))) |
| 51 | 47, 48, 49, 50 | syl3an 1160 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑋 ≤ 𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦))) |
| 52 | 51 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)) |
| 53 | | facwordi 14329 |
. . . . . . . . . 10
⊢ (((𝑋 + 𝑦) ∈ ℕ0 ∧ (𝑌 + 𝑦) ∈ ℕ0 ∧ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
| 54 | 43, 46, 52, 53 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
| 55 | 54 | 3an1rs 1359 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
| 56 | | nn0re 12537 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑦) ∈ ℕ0 → (𝑋 + 𝑦) ∈ ℝ) |
| 57 | 43, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ∈ ℝ) |
| 58 | | nn0re 12537 |
. . . . . . . . . . . . 13
⊢ ((𝑌 + 𝑦) ∈ ℕ0 → (𝑌 + 𝑦) ∈ ℝ) |
| 59 | 46, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑌 + 𝑦) ∈ ℝ) |
| 60 | 57, 59 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ)) |
| 61 | | 1re 11262 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
| 62 | | leadd1 11732 |
. . . . . . . . . . . 12
⊢ (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
| 63 | 61, 62 | mp3an3 1451 |
. . . . . . . . . . 11
⊢ (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
| 64 | 60, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
| 65 | 52, 64 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) |
| 66 | 65 | 3an1rs 1359 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) |
| 67 | 55, 66 | jca 511 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
| 68 | | faccl 14323 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑦) ∈ ℕ0 →
(!‘(𝑋 + 𝑦)) ∈
ℕ) |
| 69 | | nnre 12274 |
. . . . . . . . . . . . . . 15
⊢
((!‘(𝑋 + 𝑦)) ∈ ℕ →
(!‘(𝑋 + 𝑦)) ∈
ℝ) |
| 70 | 41, 68, 69 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ) |
| 71 | 70 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ) |
| 72 | | nngt0 12298 |
. . . . . . . . . . . . . . . 16
⊢
((!‘(𝑋 + 𝑦)) ∈ ℕ → 0 <
(!‘(𝑋 + 𝑦))) |
| 73 | 41, 68, 72 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 < (!‘(𝑋 + 𝑦))) |
| 74 | | 0re 11264 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
| 75 | | ltle 11350 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (!‘(𝑋 + 𝑦)) ∈ ℝ) → (0 <
(!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
| 76 | 74, 75 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢
((!‘(𝑋 + 𝑦)) ∈ ℝ → (0 <
(!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
| 77 | 70, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (0 < (!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
| 78 | 73, 77 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦))) |
| 79 | 78 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦))) |
| 80 | 71, 79 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦)))) |
| 81 | | faccl 14323 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 + 𝑦) ∈ ℕ0 →
(!‘(𝑌 + 𝑦)) ∈
ℕ) |
| 82 | | nnre 12274 |
. . . . . . . . . . . . . 14
⊢
((!‘(𝑌 + 𝑦)) ∈ ℕ →
(!‘(𝑌 + 𝑦)) ∈
ℝ) |
| 83 | 44, 81, 82 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ) |
| 84 | 83 | 3adant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ) |
| 85 | 80, 84 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ)) |
| 86 | | 1nn0 12544 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
| 87 | | nn0addcl 12563 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 + 𝑦) ∈ ℕ0 ∧ 1 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
| 88 | 86, 87 | mpan2 691 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 + 𝑦) ∈ ℕ0 → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
| 89 | 41, 88 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
| 90 | | nn0re 12537 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 + 𝑦) + 1) ∈ ℕ0 →
((𝑋 + 𝑦) + 1) ∈ ℝ) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ) |
| 92 | 91 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ) |
| 93 | | nn0ge0 12553 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 + 𝑦) + 1) ∈ ℕ0 → 0
≤ ((𝑋 + 𝑦) + 1)) |
| 94 | 89, 93 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1)) |
| 95 | 94 | 3adant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1)) |
| 96 | 92, 95 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1))) |
| 97 | | nn0readdcl 12595 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑌 + 𝑦) ∈ ℝ) |
| 98 | | 1red 11263 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 1 ∈ ℝ) |
| 99 | 97, 98 | readdcld 11291 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ) |
| 100 | 99 | 3adant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ) |
| 101 | 96, 100 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)) |
| 102 | 85, 101 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ))) |
| 103 | | lemul12a 12126 |
. . . . . . . . . 10
⊢
(((((!‘(𝑋 +
𝑦)) ∈ ℝ ∧ 0
≤ (!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)) →
(((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 105 | 104 | 3expa 1118 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0) ∧ 𝑦 ∈ ℕ0) →
(((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 106 | 105 | 3adantl3 1168 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (((!‘(𝑋 +
𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 107 | 67, 106 | mpd 15 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
| 108 | | facp1 14318 |
. . . . . . . . . 10
⊢ ((𝑋 + 𝑦) ∈ ℕ0 →
(!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1))) |
| 109 | 43, 108 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1))) |
| 110 | | facp1 14318 |
. . . . . . . . . 10
⊢ ((𝑌 + 𝑦) ∈ ℕ0 →
(!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
| 111 | 46, 110 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
| 112 | 109, 111 | jca 511 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 113 | | breq12 5147 |
. . . . . . . 8
⊢
(((!‘((𝑋 +
𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 114 | 112, 113 | syl 17 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 115 | 114 | 3an1rs 1359 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘((𝑋 +
𝑦) + 1)) ≤
(!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
| 116 | 107, 115 | mpbird 257 |
. . . . 5
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1))) |
| 117 | 116 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1))) |
| 118 | | addass 11243 |
. . . . . . . . 9
⊢ ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
| 119 | 34, 118 | mp3an3 1451 |
. . . . . . . 8
⊢ ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
| 120 | 27, 33, 119 | syl2an 596 |
. . . . . . 7
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
| 121 | 120 | fveq2d 6909 |
. . . . . 6
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
| 122 | 121 | 3ad2antl2 1186 |
. . . . 5
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
| 123 | 122 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
| 124 | 117, 123 | breqtrd 5168 |
. . 3
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘(𝑌 + (𝑦 + 1)))) |
| 125 | 40, 124 | eqbrtrrd 5166 |
. 2
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1)))) |
| 126 | 5, 10, 15, 20, 32, 125 | nn0indd 12717 |
1
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑁 ∈ ℕ0)
→ (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁))) |