Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  factwoffsmonot Structured version   Visualization version   GIF version

Theorem factwoffsmonot 40091
Description: A factorial with offset is monotonely increasing. (Contributed by metakunt, 20-Apr-2024.)
Assertion
Ref Expression
factwoffsmonot (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑁 ∈ ℕ0) → (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))

Proof of Theorem factwoffsmonot
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑥 = 0 → (𝑋 + 𝑥) = (𝑋 + 0))
21fveq2d 6760 . . 3 (𝑥 = 0 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 0)))
3 oveq2 7263 . . . 4 (𝑥 = 0 → (𝑌 + 𝑥) = (𝑌 + 0))
43fveq2d 6760 . . 3 (𝑥 = 0 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 0)))
52, 4breq12d 5083 . 2 (𝑥 = 0 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 0)) ≤ (!‘(𝑌 + 0))))
6 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (𝑋 + 𝑥) = (𝑋 + 𝑦))
76fveq2d 6760 . . 3 (𝑥 = 𝑦 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑦)))
8 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (𝑌 + 𝑥) = (𝑌 + 𝑦))
98fveq2d 6760 . . 3 (𝑥 = 𝑦 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑦)))
107, 9breq12d 5083 . 2 (𝑥 = 𝑦 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))))
11 oveq2 7263 . . . 4 (𝑥 = (𝑦 + 1) → (𝑋 + 𝑥) = (𝑋 + (𝑦 + 1)))
1211fveq2d 6760 . . 3 (𝑥 = (𝑦 + 1) → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + (𝑦 + 1))))
13 oveq2 7263 . . . 4 (𝑥 = (𝑦 + 1) → (𝑌 + 𝑥) = (𝑌 + (𝑦 + 1)))
1413fveq2d 6760 . . 3 (𝑥 = (𝑦 + 1) → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + (𝑦 + 1))))
1512, 14breq12d 5083 . 2 (𝑥 = (𝑦 + 1) → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1)))))
16 oveq2 7263 . . . 4 (𝑥 = 𝑁 → (𝑋 + 𝑥) = (𝑋 + 𝑁))
1716fveq2d 6760 . . 3 (𝑥 = 𝑁 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑁)))
18 oveq2 7263 . . . 4 (𝑥 = 𝑁 → (𝑌 + 𝑥) = (𝑌 + 𝑁))
1918fveq2d 6760 . . 3 (𝑥 = 𝑁 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑁)))
2017, 19breq12d 5083 . 2 (𝑥 = 𝑁 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁))))
21 facwordi 13931 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (!‘𝑋) ≤ (!‘𝑌))
22 nn0cn 12173 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℂ)
23 addid1 11085 . . . . . 6 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
2422, 23syl 17 . . . . 5 (𝑋 ∈ ℕ0 → (𝑋 + 0) = 𝑋)
2524fveq2d 6760 . . . 4 (𝑋 ∈ ℕ0 → (!‘(𝑋 + 0)) = (!‘𝑋))
26253ad2ant1 1131 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (!‘(𝑋 + 0)) = (!‘𝑋))
27 nn0cn 12173 . . . . . 6 (𝑌 ∈ ℕ0𝑌 ∈ ℂ)
28 addid1 11085 . . . . . 6 (𝑌 ∈ ℂ → (𝑌 + 0) = 𝑌)
2927, 28syl 17 . . . . 5 (𝑌 ∈ ℕ0 → (𝑌 + 0) = 𝑌)
3029fveq2d 6760 . . . 4 (𝑌 ∈ ℕ0 → (!‘(𝑌 + 0)) = (!‘𝑌))
31303ad2ant2 1132 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (!‘(𝑌 + 0)) = (!‘𝑌))
3221, 26, 313brtr4d 5102 . 2 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (!‘(𝑋 + 0)) ≤ (!‘(𝑌 + 0)))
33 nn0cn 12173 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
34 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
35 addass 10889 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1)))
3634, 35mp3an3 1448 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1)))
3722, 33, 36syl2an 595 . . . . . 6 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1)))
3837fveq2d 6760 . . . . 5 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1))))
39383ad2antl1 1183 . . . 4 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1))))
4039adantr 480 . . 3 ((((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) ∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1))))
41 nn0addcl 12198 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑋 + 𝑦) ∈ ℕ0)
42413adant2 1129 . . . . . . . . . . 11 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑋 + 𝑦) ∈ ℕ0)
4342adantr 480 . . . . . . . . . 10 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (𝑋 + 𝑦) ∈ ℕ0)
44 nn0addcl 12198 . . . . . . . . . . . 12 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑌 + 𝑦) ∈ ℕ0)
45443adant1 1128 . . . . . . . . . . 11 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑌 + 𝑦) ∈ ℕ0)
4645adantr 480 . . . . . . . . . 10 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (𝑌 + 𝑦) ∈ ℕ0)
47 nn0re 12172 . . . . . . . . . . . 12 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
48 nn0re 12172 . . . . . . . . . . . 12 (𝑌 ∈ ℕ0𝑌 ∈ ℝ)
49 nn0re 12172 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
50 leadd1 11373 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)))
5147, 48, 49, 50syl3an 1158 . . . . . . . . . . 11 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑋𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)))
5251biimpa 476 . . . . . . . . . 10 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (𝑋 + 𝑦) ≤ (𝑌 + 𝑦))
53 facwordi 13931 . . . . . . . . . 10 (((𝑋 + 𝑦) ∈ ℕ0 ∧ (𝑌 + 𝑦) ∈ ℕ0 ∧ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)))
5443, 46, 52, 53syl3anc 1369 . . . . . . . . 9 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)))
55543an1rs 1357 . . . . . . . 8 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)))
56 nn0re 12172 . . . . . . . . . . . . 13 ((𝑋 + 𝑦) ∈ ℕ0 → (𝑋 + 𝑦) ∈ ℝ)
5743, 56syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (𝑋 + 𝑦) ∈ ℝ)
58 nn0re 12172 . . . . . . . . . . . . 13 ((𝑌 + 𝑦) ∈ ℕ0 → (𝑌 + 𝑦) ∈ ℝ)
5946, 58syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (𝑌 + 𝑦) ∈ ℝ)
6057, 59jca 511 . . . . . . . . . . 11 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → ((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ))
61 1re 10906 . . . . . . . . . . . 12 1 ∈ ℝ
62 leadd1 11373 . . . . . . . . . . . 12 (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)))
6361, 62mp3an3 1448 . . . . . . . . . . 11 (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)))
6460, 63syl 17 . . . . . . . . . 10 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)))
6552, 64mpbid 231 . . . . . . . . 9 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))
66653an1rs 1357 . . . . . . . 8 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))
6755, 66jca 511 . . . . . . 7 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → ((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)))
68 faccl 13925 . . . . . . . . . . . . . . 15 ((𝑋 + 𝑦) ∈ ℕ0 → (!‘(𝑋 + 𝑦)) ∈ ℕ)
69 nnre 11910 . . . . . . . . . . . . . . 15 ((!‘(𝑋 + 𝑦)) ∈ ℕ → (!‘(𝑋 + 𝑦)) ∈ ℝ)
7041, 68, 693syl 18 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ)
71703adant2 1129 . . . . . . . . . . . . 13 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ)
72 nngt0 11934 . . . . . . . . . . . . . . . 16 ((!‘(𝑋 + 𝑦)) ∈ ℕ → 0 < (!‘(𝑋 + 𝑦)))
7341, 68, 723syl 18 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → 0 < (!‘(𝑋 + 𝑦)))
74 0re 10908 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
75 ltle 10994 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (!‘(𝑋 + 𝑦)) ∈ ℝ) → (0 < (!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦))))
7674, 75mpan 686 . . . . . . . . . . . . . . . 16 ((!‘(𝑋 + 𝑦)) ∈ ℝ → (0 < (!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦))))
7770, 76syl 17 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → (0 < (!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦))))
7873, 77mpd 15 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦)))
79783adant2 1129 . . . . . . . . . . . . 13 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦)))
8071, 79jca 511 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤ (!‘(𝑋 + 𝑦))))
81 faccl 13925 . . . . . . . . . . . . . 14 ((𝑌 + 𝑦) ∈ ℕ0 → (!‘(𝑌 + 𝑦)) ∈ ℕ)
82 nnre 11910 . . . . . . . . . . . . . 14 ((!‘(𝑌 + 𝑦)) ∈ ℕ → (!‘(𝑌 + 𝑦)) ∈ ℝ)
8344, 81, 823syl 18 . . . . . . . . . . . . 13 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ)
84833adant1 1128 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ)
8580, 84jca 511 . . . . . . . . . . 11 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤ (!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ))
86 1nn0 12179 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
87 nn0addcl 12198 . . . . . . . . . . . . . . . . 17 (((𝑋 + 𝑦) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℕ0)
8886, 87mpan2 687 . . . . . . . . . . . . . . . 16 ((𝑋 + 𝑦) ∈ ℕ0 → ((𝑋 + 𝑦) + 1) ∈ ℕ0)
8941, 88syl 17 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℕ0)
90 nn0re 12172 . . . . . . . . . . . . . . 15 (((𝑋 + 𝑦) + 1) ∈ ℕ0 → ((𝑋 + 𝑦) + 1) ∈ ℝ)
9189, 90syl 17 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ)
92913adant2 1129 . . . . . . . . . . . . 13 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ)
93 nn0ge0 12188 . . . . . . . . . . . . . . 15 (((𝑋 + 𝑦) + 1) ∈ ℕ0 → 0 ≤ ((𝑋 + 𝑦) + 1))
9489, 93syl 17 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1))
95943adant2 1129 . . . . . . . . . . . . 13 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1))
9692, 95jca 511 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)))
97 nn0readdcl 12229 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑌 + 𝑦) ∈ ℝ)
98 1red 10907 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → 1 ∈ ℝ)
9997, 98readdcld 10935 . . . . . . . . . . . . 13 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ)
100993adant1 1128 . . . . . . . . . . . 12 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ)
10196, 100jca 511 . . . . . . . . . . 11 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ))
10285, 101jca 511 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤ (!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)))
103 lemul12a 11763 . . . . . . . . . 10 (((((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤ (!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
104102, 103syl 17 . . . . . . . . 9 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
1051043expa 1116 . . . . . . . 8 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
1061053adantl3 1166 . . . . . . 7 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
10767, 106mpd 15 . . . . . 6 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))
108 facp1 13920 . . . . . . . . . 10 ((𝑋 + 𝑦) ∈ ℕ0 → (!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)))
10943, 108syl 17 . . . . . . . . 9 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)))
110 facp1 13920 . . . . . . . . . 10 ((𝑌 + 𝑦) ∈ ℕ0 → (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))
11146, 110syl 17 . . . . . . . . 9 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))
112109, 111jca 511 . . . . . . . 8 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → ((!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
113 breq12 5075 . . . . . . . 8 (((!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
114112, 113syl 17 . . . . . . 7 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑋𝑌) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
1151143an1rs 1357 . . . . . 6 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))))
116107, 115mpbird 256 . . . . 5 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)))
117116adantr 480 . . . 4 ((((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) ∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)))
118 addass 10889 . . . . . . . . 9 ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1)))
11934, 118mp3an3 1448 . . . . . . . 8 ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1)))
12027, 33, 119syl2an 595 . . . . . . 7 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1)))
121120fveq2d 6760 . . . . . 6 ((𝑌 ∈ ℕ0𝑦 ∈ ℕ0) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1))))
1221213ad2antl2 1184 . . . . 5 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1))))
123122adantr 480 . . . 4 ((((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) ∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1))))
124117, 123breqtrd 5096 . . 3 ((((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) ∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘(𝑌 + (𝑦 + 1))))
12540, 124eqbrtrrd 5094 . 2 ((((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑦 ∈ ℕ0) ∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1))))
1265, 10, 15, 20, 32, 125nn0indd 12347 1 (((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑁 ∈ ℕ0) → (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cn 11903  0cn0 12163  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator