Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 0 → (𝑋 + 𝑥) = (𝑋 + 0)) |
2 | 1 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 0 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 0))) |
3 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 0 → (𝑌 + 𝑥) = (𝑌 + 0)) |
4 | 3 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 0 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 0))) |
5 | 2, 4 | breq12d 5083 |
. 2
⊢ (𝑥 = 0 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 0)) ≤ (!‘(𝑌 + 0)))) |
6 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
7 | 6 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 𝑦 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑦))) |
8 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑌 + 𝑥) = (𝑌 + 𝑦)) |
9 | 8 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 𝑦 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑦))) |
10 | 7, 9 | breq12d 5083 |
. 2
⊢ (𝑥 = 𝑦 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)))) |
11 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑋 + 𝑥) = (𝑋 + (𝑦 + 1))) |
12 | 11 | fveq2d 6760 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + (𝑦 + 1)))) |
13 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑌 + 𝑥) = (𝑌 + (𝑦 + 1))) |
14 | 13 | fveq2d 6760 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + (𝑦 + 1)))) |
15 | 12, 14 | breq12d 5083 |
. 2
⊢ (𝑥 = (𝑦 + 1) → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1))))) |
16 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑋 + 𝑥) = (𝑋 + 𝑁)) |
17 | 16 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 𝑁 → (!‘(𝑋 + 𝑥)) = (!‘(𝑋 + 𝑁))) |
18 | | oveq2 7263 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑌 + 𝑥) = (𝑌 + 𝑁)) |
19 | 18 | fveq2d 6760 |
. . 3
⊢ (𝑥 = 𝑁 → (!‘(𝑌 + 𝑥)) = (!‘(𝑌 + 𝑁))) |
20 | 17, 19 | breq12d 5083 |
. 2
⊢ (𝑥 = 𝑁 → ((!‘(𝑋 + 𝑥)) ≤ (!‘(𝑌 + 𝑥)) ↔ (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))) |
21 | | facwordi 13931 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘𝑋) ≤
(!‘𝑌)) |
22 | | nn0cn 12173 |
. . . . . 6
⊢ (𝑋 ∈ ℕ0
→ 𝑋 ∈
ℂ) |
23 | | addid1 11085 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ ℕ0
→ (𝑋 + 0) = 𝑋) |
25 | 24 | fveq2d 6760 |
. . . 4
⊢ (𝑋 ∈ ℕ0
→ (!‘(𝑋 + 0)) =
(!‘𝑋)) |
26 | 25 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑋 + 0)) =
(!‘𝑋)) |
27 | | nn0cn 12173 |
. . . . . 6
⊢ (𝑌 ∈ ℕ0
→ 𝑌 ∈
ℂ) |
28 | | addid1 11085 |
. . . . . 6
⊢ (𝑌 ∈ ℂ → (𝑌 + 0) = 𝑌) |
29 | 27, 28 | syl 17 |
. . . . 5
⊢ (𝑌 ∈ ℕ0
→ (𝑌 + 0) = 𝑌) |
30 | 29 | fveq2d 6760 |
. . . 4
⊢ (𝑌 ∈ ℕ0
→ (!‘(𝑌 + 0)) =
(!‘𝑌)) |
31 | 30 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑌 + 0)) =
(!‘𝑌)) |
32 | 21, 26, 31 | 3brtr4d 5102 |
. 2
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) →
(!‘(𝑋 + 0)) ≤
(!‘(𝑌 +
0))) |
33 | | nn0cn 12173 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
34 | | ax-1cn 10860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
35 | | addass 10889 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
36 | 34, 35 | mp3an3 1448 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
37 | 22, 33, 36 | syl2an 595 |
. . . . . 6
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) = (𝑋 + (𝑦 + 1))) |
38 | 37 | fveq2d 6760 |
. . . . 5
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
39 | 38 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
40 | 39 | adantr 480 |
. . 3
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) = (!‘(𝑋 + (𝑦 + 1)))) |
41 | | nn0addcl 12198 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑋 + 𝑦) ∈
ℕ0) |
42 | 41 | 3adant2 1129 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑋 + 𝑦) ∈
ℕ0) |
43 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ∈
ℕ0) |
44 | | nn0addcl 12198 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑌 + 𝑦) ∈
ℕ0) |
45 | 44 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑌 + 𝑦) ∈
ℕ0) |
46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑌 + 𝑦) ∈
ℕ0) |
47 | | nn0re 12172 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℕ0
→ 𝑋 ∈
ℝ) |
48 | | nn0re 12172 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ ℕ0
→ 𝑌 ∈
ℝ) |
49 | | nn0re 12172 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
50 | | leadd1 11373 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 ≤ 𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦))) |
51 | 47, 48, 49, 50 | syl3an 1158 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (𝑋 ≤ 𝑌 ↔ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦))) |
52 | 51 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)) |
53 | | facwordi 13931 |
. . . . . . . . . 10
⊢ (((𝑋 + 𝑦) ∈ ℕ0 ∧ (𝑌 + 𝑦) ∈ ℕ0 ∧ (𝑋 + 𝑦) ≤ (𝑌 + 𝑦)) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
54 | 43, 46, 52, 53 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
55 | 54 | 3an1rs 1357 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) |
56 | | nn0re 12172 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑦) ∈ ℕ0 → (𝑋 + 𝑦) ∈ ℝ) |
57 | 43, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑦) ∈ ℝ) |
58 | | nn0re 12172 |
. . . . . . . . . . . . 13
⊢ ((𝑌 + 𝑦) ∈ ℕ0 → (𝑌 + 𝑦) ∈ ℝ) |
59 | 46, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (𝑌 + 𝑦) ∈ ℝ) |
60 | 57, 59 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ)) |
61 | | 1re 10906 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
62 | | leadd1 11373 |
. . . . . . . . . . . 12
⊢ (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
63 | 61, 62 | mp3an3 1448 |
. . . . . . . . . . 11
⊢ (((𝑋 + 𝑦) ∈ ℝ ∧ (𝑌 + 𝑦) ∈ ℝ) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
64 | 60, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) ≤ (𝑌 + 𝑦) ↔ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
65 | 52, 64 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) |
66 | 65 | 3an1rs 1357 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) |
67 | 55, 66 | jca 511 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1))) |
68 | | faccl 13925 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑦) ∈ ℕ0 →
(!‘(𝑋 + 𝑦)) ∈
ℕ) |
69 | | nnre 11910 |
. . . . . . . . . . . . . . 15
⊢
((!‘(𝑋 + 𝑦)) ∈ ℕ →
(!‘(𝑋 + 𝑦)) ∈
ℝ) |
70 | 41, 68, 69 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ) |
71 | 70 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (!‘(𝑋 + 𝑦)) ∈ ℝ) |
72 | | nngt0 11934 |
. . . . . . . . . . . . . . . 16
⊢
((!‘(𝑋 + 𝑦)) ∈ ℕ → 0 <
(!‘(𝑋 + 𝑦))) |
73 | 41, 68, 72 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 < (!‘(𝑋 + 𝑦))) |
74 | | 0re 10908 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
75 | | ltle 10994 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (!‘(𝑋 + 𝑦)) ∈ ℝ) → (0 <
(!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
76 | 74, 75 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢
((!‘(𝑋 + 𝑦)) ∈ ℝ → (0 <
(!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
77 | 70, 76 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (0 < (!‘(𝑋 + 𝑦)) → 0 ≤ (!‘(𝑋 + 𝑦)))) |
78 | 73, 77 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦))) |
79 | 78 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → 0 ≤ (!‘(𝑋 + 𝑦))) |
80 | 71, 79 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦)))) |
81 | | faccl 13925 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 + 𝑦) ∈ ℕ0 →
(!‘(𝑌 + 𝑦)) ∈
ℕ) |
82 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢
((!‘(𝑌 + 𝑦)) ∈ ℕ →
(!‘(𝑌 + 𝑦)) ∈
ℝ) |
83 | 44, 81, 82 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ) |
84 | 83 | 3adant1 1128 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (!‘(𝑌 + 𝑦)) ∈ ℝ) |
85 | 80, 84 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ)) |
86 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
87 | | nn0addcl 12198 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 + 𝑦) ∈ ℕ0 ∧ 1 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
88 | 86, 87 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 + 𝑦) ∈ ℕ0 → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
89 | 41, 88 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈
ℕ0) |
90 | | nn0re 12172 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 + 𝑦) + 1) ∈ ℕ0 →
((𝑋 + 𝑦) + 1) ∈ ℝ) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ) |
92 | 91 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((𝑋 + 𝑦) + 1) ∈ ℝ) |
93 | | nn0ge0 12188 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 + 𝑦) + 1) ∈ ℕ0 → 0
≤ ((𝑋 + 𝑦) + 1)) |
94 | 89, 93 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1)) |
95 | 94 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → 0 ≤ ((𝑋 + 𝑦) + 1)) |
96 | 92, 95 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1))) |
97 | | nn0readdcl 12229 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑌 + 𝑦) ∈ ℝ) |
98 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → 1 ∈ ℝ) |
99 | 97, 98 | readdcld 10935 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ) |
100 | 99 | 3adant1 1128 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((𝑌 + 𝑦) + 1) ∈ ℝ) |
101 | 96, 100 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)) |
102 | 85, 101 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → ((((!‘(𝑋 + 𝑦)) ∈ ℝ ∧ 0 ≤
(!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ))) |
103 | | lemul12a 11763 |
. . . . . . . . . 10
⊢
(((((!‘(𝑋 +
𝑦)) ∈ ℝ ∧ 0
≤ (!‘(𝑋 + 𝑦))) ∧ (!‘(𝑌 + 𝑦)) ∈ ℝ) ∧ ((((𝑋 + 𝑦) + 1) ∈ ℝ ∧ 0 ≤ ((𝑋 + 𝑦) + 1)) ∧ ((𝑌 + 𝑦) + 1) ∈ ℝ)) →
(((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
104 | 102, 103 | syl 17 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) → (((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
105 | 104 | 3expa 1116 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0) ∧ 𝑦 ∈ ℕ0) →
(((!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
106 | 105 | 3adantl3 1166 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (((!‘(𝑋 +
𝑦)) ≤ (!‘(𝑌 + 𝑦)) ∧ ((𝑋 + 𝑦) + 1) ≤ ((𝑌 + 𝑦) + 1)) → ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
107 | 67, 106 | mpd 15 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
108 | | facp1 13920 |
. . . . . . . . . 10
⊢ ((𝑋 + 𝑦) ∈ ℕ0 →
(!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1))) |
109 | 43, 108 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1))) |
110 | | facp1 13920 |
. . . . . . . . . 10
⊢ ((𝑌 + 𝑦) ∈ ℕ0 →
(!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
111 | 46, 110 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) |
112 | 109, 111 | jca 511 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((!‘((𝑋 + 𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
113 | | breq12 5075 |
. . . . . . . 8
⊢
(((!‘((𝑋 +
𝑦) + 1)) = ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ∧ (!‘((𝑌 + 𝑦) + 1)) = ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1))) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
114 | 112, 113 | syl 17 |
. . . . . . 7
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑦
∈ ℕ0) ∧ 𝑋 ≤ 𝑌) → ((!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
115 | 114 | 3an1rs 1357 |
. . . . . 6
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ ((!‘((𝑋 +
𝑦) + 1)) ≤
(!‘((𝑌 + 𝑦) + 1)) ↔ ((!‘(𝑋 + 𝑦)) · ((𝑋 + 𝑦) + 1)) ≤ ((!‘(𝑌 + 𝑦)) · ((𝑌 + 𝑦) + 1)))) |
116 | 107, 115 | mpbird 256 |
. . . . 5
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1))) |
117 | 116 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘((𝑌 + 𝑦) + 1))) |
118 | | addass 10889 |
. . . . . . . . 9
⊢ ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
119 | 34, 118 | mp3an3 1448 |
. . . . . . . 8
⊢ ((𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
120 | 27, 33, 119 | syl2an 595 |
. . . . . . 7
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑌 + 𝑦) + 1) = (𝑌 + (𝑦 + 1))) |
121 | 120 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑌 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
122 | 121 | 3ad2antl2 1184 |
. . . . 5
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
→ (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
123 | 122 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑌 + 𝑦) + 1)) = (!‘(𝑌 + (𝑦 + 1)))) |
124 | 117, 123 | breqtrd 5096 |
. . 3
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘((𝑋 + 𝑦) + 1)) ≤ (!‘(𝑌 + (𝑦 + 1)))) |
125 | 40, 124 | eqbrtrrd 5094 |
. 2
⊢ ((((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑦 ∈ ℕ0)
∧ (!‘(𝑋 + 𝑦)) ≤ (!‘(𝑌 + 𝑦))) → (!‘(𝑋 + (𝑦 + 1))) ≤ (!‘(𝑌 + (𝑦 + 1)))) |
126 | 5, 10, 15, 20, 32, 125 | nn0indd 12347 |
1
⊢ (((𝑋 ∈ ℕ0
∧ 𝑌 ∈
ℕ0 ∧ 𝑋
≤ 𝑌) ∧ 𝑁 ∈ ℕ0)
→ (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁))) |