Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jaodd Structured version   Visualization version   GIF version

Theorem jaodd 40102
Description: Double deduction form of jaoi 853. (Contributed by Steven Nguyen, 17-Jul-2022.)
Hypotheses
Ref Expression
jaodd.1 (𝜑 → (𝜓 → (𝜒𝜃)))
jaodd.2 (𝜑 → (𝜓 → (𝜏𝜃)))
Assertion
Ref Expression
jaodd (𝜑 → (𝜓 → ((𝜒𝜏) → 𝜃)))

Proof of Theorem jaodd
StepHypRef Expression
1 jaodd.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 jaodd.2 . 2 (𝜑 → (𝜓 → (𝜏𝜃)))
3 jao 957 . 2 ((𝜒𝜃) → ((𝜏𝜃) → ((𝜒𝜏) → 𝜃)))
41, 2, 3syl6c 70 1 (𝜑 → (𝜓 → ((𝜒𝜏) → 𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator