Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impbid2 | Structured version Visualization version GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | ⊢ (𝜓 → 𝜒) |
impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | impbid1 228 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
4 | 3 | bicomd 226 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Copyright terms: Public domain | W3C validator |