Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con4d | Structured version Visualization version GIF version |
Description: Deduction associated with con4 113. (Contributed by NM, 26-Mar-1995.) |
Ref | Expression |
---|---|
con4d.1 | ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
con4d | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4d.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜒) → (𝜒 → 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Copyright terms: Public domain | W3C validator |