|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > con4d | Structured version Visualization version GIF version | ||
| Description: Deduction associated with con4 113. (Contributed by NM, 26-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| con4d.1 | ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) | 
| Ref | Expression | 
|---|---|
| con4d | ⊢ (𝜑 → (𝜒 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con4d.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜒) → (𝜒 → 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) | 
| Copyright terms: Public domain | W3C validator |