Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord | Structured version Visualization version GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | df-or 844 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (¬ 𝜓 → 𝜒)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Copyright terms: Public domain | W3C validator |