MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqsetvlem Structured version   Visualization version   GIF version

Theorem iseqsetvlem 2808
Description: Lemma for iseqsetv-cleq 2809. (Contributed by Wolf Lammen, 17-Aug-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
iseqsetvlem (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
Distinct variable group:   𝑥,𝑧,𝐴

Proof of Theorem iseqsetvlem
StepHypRef Expression
1 eqeq1 2744 . 2 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
21cbvexvw 2036 1 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732
This theorem is referenced by:  iseqsetv-cleq  2809
  Copyright terms: Public domain W3C validator