![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseqsetvlem | Structured version Visualization version GIF version |
Description: Lemma for iseqsetv-cleq 2809. (Contributed by Wolf Lammen, 17-Aug-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
iseqsetvlem | ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . 2 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) | |
2 | 1 | cbvexvw 2036 | 1 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: iseqsetv-cleq 2809 |
Copyright terms: Public domain | W3C validator |