MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseqsetv-cleq Structured version   Visualization version   GIF version

Theorem iseqsetv-cleq 2798
Description: Alternate proof of iseqsetv-clel 2812. The expression 𝑥𝑥 = 𝐴 does not depend on a particular choice of the set variable. The proof here avoids df-clab 2713, df-clel 2808 and ax-8 2109, but instead is based on ax-9 2117, ax-ext 2706 and df-cleq 2726. In particular it still accepts 𝑥𝐴 being a primitive syntax term, not assuming any specific semantics (like elementhood in some form).

Use it in contexts where you want to avoid df-clab 2713, or you need df-cleq 2726 anyway. See the alternative version , not using df-cleq 2726 or ax-ext 2706 or ax-9 2117. (Contributed by Wolf Lammen, 6-Aug-2025.) (Proof modification is discouraged.)

Assertion
Ref Expression
iseqsetv-cleq (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem iseqsetv-cleq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iseqsetvlem 2797 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
2 iseqsetvlem 2797 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
31, 2bitr4i 278 1 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726
This theorem is referenced by:  clelab  2879
  Copyright terms: Public domain W3C validator