| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2403 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2037 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1781 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: cbvex2vw 2042 mojust 2536 mo4 2563 eujust 2568 cbveuvw 2602 iseqsetvlem 2796 cbvrexvw 3212 euind 3679 reuind 3708 cbvopab1v 5171 cbvopab2v 5172 bm1.3iiOLD 5242 reusv2lem2 5339 relop 5794 dmcoss 5918 dmcossOLD 5919 fv3 6846 exfo 7044 cbvoprab3v 7444 zfun 7675 suppimacnv 8110 frrlem1 8222 ac6sfi 9175 brwdom2 9466 ttrclss 9617 ttrclselem2 9623 aceq1 10015 aceq0 10016 aceq3lem 10018 dfac4 10020 kmlem2 10050 kmlem13 10061 axdc4lem 10353 zfac 10358 zfcndun 10513 zfcndac 10517 sup2 12085 supmul 12101 climmo 15466 summo 15626 prodmo 15845 gsumval3eu 19818 elpt 23488 gsumwrd2dccatlem 33053 1arithidomlem1 33507 1arithidom 33509 bnj1185 34826 axreg 35146 axregscl 35147 tz9.1regs 35151 fineqvac 35160 satf0op 35442 sat1el2xp 35444 cbvrexvw2 36292 cbvoprab1vw 36302 cbvoprab2vw 36303 cbvoprab13vw 36306 bj-bm1.3ii 37129 wl-ax12v2cl 37571 fdc 37805 sn-sup2 42609 cpcoll2d 44376 axc11next 44523 fnchoice 45150 ichexmpl1 47593 |
| Copyright terms: Public domain | W3C validator |