| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2399 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2036 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2041 mojust 2532 mo4 2559 eujust 2564 cbveuvw 2598 iseqsetvlem 2792 cbvrexvw 3208 cbvrexdva2OLD 3314 euind 3686 reuind 3715 cbvopab1v 5173 cbvopab2v 5174 bm1.3iiOLD 5244 reusv2lem2 5341 relop 5797 dmcoss 5920 dmcossOLD 5921 fv3 6844 exfo 7043 cbvoprab3v 7445 zfun 7676 suppimacnv 8114 frrlem1 8226 ac6sfi 9189 brwdom2 9484 ttrclss 9635 ttrclselem2 9641 aceq1 10030 aceq0 10031 aceq3lem 10033 dfac4 10035 kmlem2 10065 kmlem13 10076 axdc4lem 10368 zfac 10373 zfcndun 10528 zfcndac 10532 sup2 12099 supmul 12115 climmo 15482 summo 15642 prodmo 15861 gsumval3eu 19801 elpt 23475 gsumwrd2dccatlem 33032 1arithidomlem1 33482 1arithidom 33484 bnj1185 34759 axreg 35061 axregscl 35062 tz9.1regs 35066 fineqvac 35071 satf0op 35349 sat1el2xp 35351 cbvrexvw2 36200 cbvoprab1vw 36210 cbvoprab2vw 36211 cbvoprab13vw 36214 bj-bm1.3ii 37037 wl-ax12v2cl 37479 fdc 37724 sn-sup2 42464 cpcoll2d 44232 axc11next 44379 fnchoice 45007 ichexmpl1 47454 |
| Copyright terms: Public domain | W3C validator |