MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexvw Structured version   Visualization version   GIF version

Theorem cbvexvw 2036
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2405 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.)
Hypothesis
Ref Expression
cbvalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexvw (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvexvw
StepHypRef Expression
1 cbvalvw.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32cbvalvw 2035 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
43notbii 320 . 2 (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)
5 df-ex 1780 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
6 df-ex 1780 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
74, 5, 63bitr4i 303 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  cbvex2vw  2040  mojust  2538  mo4  2565  eujust  2570  cbveuvw  2604  iseqsetvlem  2798  cbvrexvw  3221  cbvrexdva2OLD  3329  euind  3707  reuind  3736  cbvopab1v  5197  cbvopab2v  5199  bm1.3iiOLD  5272  reusv2lem2  5369  relop  5830  dmcoss  5954  fv3  6894  exfo  7095  cbvoprab3v  7499  zfun  7730  suppimacnv  8173  frrlem1  8285  wfrlem1OLD  8322  ac6sfi  9292  brwdom2  9587  ttrclss  9734  ttrclselem2  9740  aceq1  10131  aceq0  10132  aceq3lem  10134  dfac4  10136  kmlem2  10166  kmlem13  10177  axdc4lem  10469  zfac  10474  zfcndun  10629  zfcndac  10633  sup2  12198  supmul  12214  climmo  15573  summo  15733  prodmo  15952  gsumval3eu  19885  elpt  23510  gsumwrd2dccatlem  33060  1arithidomlem1  33550  1arithidom  33552  bnj1185  34824  fineqvac  35128  satf0op  35399  sat1el2xp  35401  cbvrexvw2  36245  cbvoprab1vw  36255  cbvoprab2vw  36256  cbvoprab13vw  36259  bj-bm1.3ii  37082  wl-ax12v2cl  37524  fdc  37769  sn-sup2  42514  cpcoll2d  44283  axc11next  44430  fnchoice  45053  ichexmpl1  47483
  Copyright terms: Public domain W3C validator