![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2039 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 319 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1782 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1782 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: cbvex2vw 2044 mojust 2533 mo4 2560 eujust 2565 cbveuvw 2600 clelab 2879 cbvrexvw 3235 cbvrexdva2OLD 3346 euind 3720 reuind 3749 cbvopab1v 5227 cbvopab2v 5229 bm1.3ii 5302 reusv2lem2 5397 relop 5850 dmcoss 5970 fv3 6909 exfo 7106 zfun 7728 suppimacnv 8161 frrlem1 8273 wfrlem1OLD 8310 ac6sfi 9289 brwdom2 9570 ttrclss 9717 ttrclselem2 9723 aceq1 10114 aceq0 10115 aceq3lem 10117 dfac4 10119 kmlem2 10148 kmlem13 10159 axdc4lem 10452 zfac 10457 zfcndun 10612 zfcndac 10616 sup2 12174 supmul 12190 climmo 15505 summo 15667 prodmo 15884 gsumval3eu 19813 elpt 23296 bnj1185 34090 fineqvac 34383 satf0op 34654 sat1el2xp 34656 bj-bm1.3ii 36248 fdc 36916 sn-sup2 41644 cpcoll2d 43320 axc11next 43467 fnchoice 44015 ichexmpl1 46436 |
Copyright terms: Public domain | W3C validator |