![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2409 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2035 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1778 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1778 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: cbvex2vw 2040 mojust 2542 mo4 2569 eujust 2574 cbveuvw 2608 iseqsetvlem 2808 cbvrexvw 3244 cbvrexdva2OLD 3358 euind 3746 reuind 3775 cbvopab1v 5245 cbvopab2v 5247 bm1.3ii 5320 reusv2lem2 5417 relop 5875 dmcoss 5997 fv3 6938 exfo 7139 cbvoprab3v 7542 zfun 7771 suppimacnv 8215 frrlem1 8327 wfrlem1OLD 8364 ac6sfi 9348 brwdom2 9642 ttrclss 9789 ttrclselem2 9795 aceq1 10186 aceq0 10187 aceq3lem 10189 dfac4 10191 kmlem2 10221 kmlem13 10232 axdc4lem 10524 zfac 10529 zfcndun 10684 zfcndac 10688 sup2 12251 supmul 12267 climmo 15603 summo 15765 prodmo 15984 gsumval3eu 19946 elpt 23601 1arithidomlem1 33528 1arithidom 33530 bnj1185 34769 fineqvac 35073 satf0op 35345 sat1el2xp 35347 cbvrexvw2 36193 cbvoprab1vw 36203 cbvoprab2vw 36204 cbvoprab13vw 36207 bj-bm1.3ii 37030 fdc 37705 sn-sup2 42447 cpcoll2d 44228 axc11next 44375 fnchoice 44929 ichexmpl1 47343 |
Copyright terms: Public domain | W3C validator |