![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2403 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2032 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1776 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1776 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1534 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: cbvex2vw 2037 mojust 2536 mo4 2563 eujust 2568 cbveuvw 2602 iseqsetvlem 2802 cbvrexvw 3235 cbvrexdva2OLD 3347 euind 3732 reuind 3761 cbvopab1v 5226 cbvopab2v 5228 bm1.3iiOLD 5307 reusv2lem2 5404 relop 5863 dmcoss 5987 fv3 6924 exfo 7124 cbvoprab3v 7524 zfun 7754 suppimacnv 8197 frrlem1 8309 wfrlem1OLD 8346 ac6sfi 9317 brwdom2 9610 ttrclss 9757 ttrclselem2 9763 aceq1 10154 aceq0 10155 aceq3lem 10157 dfac4 10159 kmlem2 10189 kmlem13 10200 axdc4lem 10492 zfac 10497 zfcndun 10652 zfcndac 10656 sup2 12221 supmul 12237 climmo 15589 summo 15749 prodmo 15968 gsumval3eu 19936 elpt 23595 gsumwrd2dccatlem 33051 1arithidomlem1 33542 1arithidom 33544 bnj1185 34785 fineqvac 35089 satf0op 35361 sat1el2xp 35363 cbvrexvw2 36209 cbvoprab1vw 36219 cbvoprab2vw 36220 cbvoprab13vw 36223 bj-bm1.3ii 37046 wl-ax12v2cl 37486 fdc 37731 sn-sup2 42477 cpcoll2d 44254 axc11next 44401 fnchoice 44966 ichexmpl1 47393 |
Copyright terms: Public domain | W3C validator |