| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2036 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2041 mojust 2533 mo4 2560 eujust 2565 cbveuvw 2599 iseqsetvlem 2793 cbvrexvw 3217 cbvrexdva2OLD 3325 euind 3698 reuind 3727 cbvopab1v 5188 cbvopab2v 5189 bm1.3iiOLD 5260 reusv2lem2 5357 relop 5817 dmcoss 5941 fv3 6879 exfo 7080 cbvoprab3v 7484 zfun 7715 suppimacnv 8156 frrlem1 8268 ac6sfi 9238 brwdom2 9533 ttrclss 9680 ttrclselem2 9686 aceq1 10077 aceq0 10078 aceq3lem 10080 dfac4 10082 kmlem2 10112 kmlem13 10123 axdc4lem 10415 zfac 10420 zfcndun 10575 zfcndac 10579 sup2 12146 supmul 12162 climmo 15530 summo 15690 prodmo 15909 gsumval3eu 19841 elpt 23466 gsumwrd2dccatlem 33013 1arithidomlem1 33513 1arithidom 33515 bnj1185 34790 fineqvac 35094 satf0op 35371 sat1el2xp 35373 cbvrexvw2 36222 cbvoprab1vw 36232 cbvoprab2vw 36233 cbvoprab13vw 36236 bj-bm1.3ii 37059 wl-ax12v2cl 37501 fdc 37746 sn-sup2 42486 cpcoll2d 44255 axc11next 44402 fnchoice 45030 ichexmpl1 47474 |
| Copyright terms: Public domain | W3C validator |