Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2040 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 319 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1784 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: cbvex2vw 2045 mojust 2539 mo4 2566 eujust 2571 cbveuvw 2606 clelab 2882 cbvrexvw 3373 cbvrexdva2 3382 euind 3654 reuind 3683 cbvopab1v 5149 cbvopab2v 5151 bm1.3ii 5221 reusv2lem2 5317 relop 5748 dmcoss 5869 fv3 6774 exfo 6963 zfun 7567 suppimacnv 7961 frrlem1 8073 wfrlem1OLD 8110 ac6sfi 8988 brwdom2 9262 aceq1 9804 aceq0 9805 aceq3lem 9807 dfac4 9809 kmlem2 9838 kmlem13 9849 axdc4lem 10142 zfac 10147 zfcndun 10302 zfcndac 10306 sup2 11861 supmul 11877 climmo 15194 summo 15357 prodmo 15574 gsumval3eu 19420 elpt 22631 bnj1185 32673 fineqvac 32966 satf0op 33239 sat1el2xp 33241 ttrclss 33706 ttrclselem2 33712 bj-bm1.3ii 35162 fdc 35830 sn-sup2 40360 cpcoll2d 41766 axc11next 41913 fnchoice 42461 ichexmpl1 44809 |
Copyright terms: Public domain | W3C validator |