![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2413 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 310 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2138 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 312 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1876 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1876 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 295 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∀wal 1651 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 |
This theorem is referenced by: mojust 2590 eujust 2611 euind 3589 reuind 3609 cbvopab2v 4920 bm1.3ii 4978 reusv2lem2 5069 relop 5476 dmcoss 5589 fv3 6429 exfo 6603 zfun 7184 suppimacnv 7543 wfrlem1 7652 ac6sfi 8446 brwdom2 8720 aceq1 9226 aceq0 9227 aceq3lem 9229 dfac4 9231 kmlem2 9261 kmlem13 9272 axdc4lem 9565 zfac 9570 zfcndun 9725 zfcndac 9729 sup2 11271 supmul 11287 climmo 14629 summo 14789 prodmo 15003 gsumval3eu 18620 elpt 21704 bnj1185 31381 frrlem1 32293 bj-denotesv 33349 bj-bm1.3ii 33516 fdc 34028 axc11next 39388 fnchoice 39948 |
Copyright terms: Public domain | W3C validator |