| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2405 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2035 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2040 mojust 2538 mo4 2565 eujust 2570 cbveuvw 2604 iseqsetvlem 2798 cbvrexvw 3221 cbvrexdva2OLD 3329 euind 3707 reuind 3736 cbvopab1v 5197 cbvopab2v 5199 bm1.3iiOLD 5272 reusv2lem2 5369 relop 5830 dmcoss 5954 fv3 6894 exfo 7095 cbvoprab3v 7499 zfun 7730 suppimacnv 8173 frrlem1 8285 wfrlem1OLD 8322 ac6sfi 9292 brwdom2 9587 ttrclss 9734 ttrclselem2 9740 aceq1 10131 aceq0 10132 aceq3lem 10134 dfac4 10136 kmlem2 10166 kmlem13 10177 axdc4lem 10469 zfac 10474 zfcndun 10629 zfcndac 10633 sup2 12198 supmul 12214 climmo 15573 summo 15733 prodmo 15952 gsumval3eu 19885 elpt 23510 gsumwrd2dccatlem 33060 1arithidomlem1 33550 1arithidom 33552 bnj1185 34824 fineqvac 35128 satf0op 35399 sat1el2xp 35401 cbvrexvw2 36245 cbvoprab1vw 36255 cbvoprab2vw 36256 cbvoprab13vw 36259 bj-bm1.3ii 37082 wl-ax12v2cl 37524 fdc 37769 sn-sup2 42514 cpcoll2d 44283 axc11next 44430 fnchoice 45053 ichexmpl1 47483 |
| Copyright terms: Public domain | W3C validator |