| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2037 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1781 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: cbvex2vw 2042 mojust 2534 mo4 2561 eujust 2566 cbveuvw 2600 iseqsetvlem 2794 cbvrexvw 3211 euind 3683 reuind 3712 cbvopab1v 5169 cbvopab2v 5170 bm1.3iiOLD 5240 reusv2lem2 5337 relop 5790 dmcoss 5914 dmcossOLD 5915 fv3 6840 exfo 7038 cbvoprab3v 7438 zfun 7669 suppimacnv 8104 frrlem1 8216 ac6sfi 9168 brwdom2 9459 ttrclss 9610 ttrclselem2 9616 aceq1 10005 aceq0 10006 aceq3lem 10008 dfac4 10010 kmlem2 10040 kmlem13 10051 axdc4lem 10343 zfac 10348 zfcndun 10503 zfcndac 10507 sup2 12075 supmul 12091 climmo 15461 summo 15621 prodmo 15840 gsumval3eu 19814 elpt 23485 gsumwrd2dccatlem 33041 1arithidomlem1 33495 1arithidom 33497 bnj1185 34800 axreg 35113 axregscl 35114 tz9.1regs 35118 fineqvac 35127 satf0op 35409 sat1el2xp 35411 cbvrexvw2 36260 cbvoprab1vw 36270 cbvoprab2vw 36271 cbvoprab13vw 36274 bj-bm1.3ii 37097 wl-ax12v2cl 37539 fdc 37784 sn-sup2 42523 cpcoll2d 44291 axc11next 44438 fnchoice 45065 ichexmpl1 47499 |
| Copyright terms: Public domain | W3C validator |