![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2392 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2031 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1774 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1774 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 |
This theorem is referenced by: cbvex2vw 2036 mojust 2525 mo4 2552 eujust 2557 cbveuvw 2592 clelab 2871 cbvrexvw 3227 cbvrexdva2OLD 3338 euind 3713 reuind 3742 cbvopab1v 5218 cbvopab2v 5220 bm1.3ii 5293 reusv2lem2 5388 relop 5841 dmcoss 5961 fv3 6900 exfo 7097 zfun 7720 suppimacnv 8154 frrlem1 8267 wfrlem1OLD 8304 ac6sfi 9284 brwdom2 9565 ttrclss 9712 ttrclselem2 9718 aceq1 10109 aceq0 10110 aceq3lem 10112 dfac4 10114 kmlem2 10143 kmlem13 10154 axdc4lem 10447 zfac 10452 zfcndun 10607 zfcndac 10611 sup2 12168 supmul 12184 climmo 15499 summo 15661 prodmo 15878 gsumval3eu 19816 elpt 23400 bnj1185 34295 fineqvac 34588 satf0op 34859 sat1el2xp 34861 bj-bm1.3ii 36436 fdc 37107 sn-sup2 41856 cpcoll2d 43532 axc11next 43679 fnchoice 44227 ichexmpl1 46647 |
Copyright terms: Public domain | W3C validator |