![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvalvw 2040 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
5 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1783 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 |
This theorem is referenced by: cbvex2vw 2045 mojust 2534 mo4 2561 eujust 2566 cbveuvw 2601 clelab 2880 cbvrexvw 3236 cbvrexdva2OLD 3347 euind 3721 reuind 3750 cbvopab1v 5228 cbvopab2v 5230 bm1.3ii 5303 reusv2lem2 5398 relop 5851 dmcoss 5971 fv3 6910 exfo 7107 zfun 7726 suppimacnv 8159 frrlem1 8271 wfrlem1OLD 8308 ac6sfi 9287 brwdom2 9568 ttrclss 9715 ttrclselem2 9721 aceq1 10112 aceq0 10113 aceq3lem 10115 dfac4 10117 kmlem2 10146 kmlem13 10157 axdc4lem 10450 zfac 10455 zfcndun 10610 zfcndac 10614 sup2 12170 supmul 12186 climmo 15501 summo 15663 prodmo 15880 gsumval3eu 19772 elpt 23076 bnj1185 33804 fineqvac 34097 satf0op 34368 sat1el2xp 34370 bj-bm1.3ii 35945 fdc 36613 sn-sup2 41342 cpcoll2d 43018 axc11next 43165 fnchoice 43713 ichexmpl1 46137 |
Copyright terms: Public domain | W3C validator |