| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2399 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexvw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | cbvalvw 2036 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 5 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2041 mojust 2532 mo4 2559 eujust 2564 cbveuvw 2598 iseqsetvlem 2792 cbvrexvw 3216 cbvrexdva2OLD 3323 euind 3695 reuind 3724 cbvopab1v 5185 cbvopab2v 5186 bm1.3iiOLD 5257 reusv2lem2 5354 relop 5814 dmcoss 5938 fv3 6876 exfo 7077 cbvoprab3v 7481 zfun 7712 suppimacnv 8153 frrlem1 8265 ac6sfi 9231 brwdom2 9526 ttrclss 9673 ttrclselem2 9679 aceq1 10070 aceq0 10071 aceq3lem 10073 dfac4 10075 kmlem2 10105 kmlem13 10116 axdc4lem 10408 zfac 10413 zfcndun 10568 zfcndac 10572 sup2 12139 supmul 12155 climmo 15523 summo 15683 prodmo 15902 gsumval3eu 19834 elpt 23459 gsumwrd2dccatlem 33006 1arithidomlem1 33506 1arithidom 33508 bnj1185 34783 fineqvac 35087 satf0op 35364 sat1el2xp 35366 cbvrexvw2 36215 cbvoprab1vw 36225 cbvoprab2vw 36226 cbvoprab13vw 36229 bj-bm1.3ii 37052 wl-ax12v2cl 37494 fdc 37739 sn-sup2 42479 cpcoll2d 44248 axc11next 44395 fnchoice 45023 ichexmpl1 47470 |
| Copyright terms: Public domain | W3C validator |