Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralbidc Structured version   Visualization version   GIF version

Theorem ralbidc 46034
Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb 46033. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
ralbidb.1 (𝜑 → (𝑥𝐴 ↔ (𝑥𝐵𝜓)))
ralbidc.2 (𝜑 → ((𝑥𝐴 ∧ (𝑥𝐵𝜓)) → (𝜒𝜃)))
Assertion
Ref Expression
ralbidc (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 (𝜓𝜃)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝜃(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ralbidc
StepHypRef Expression
1 ralbidb.1 . . . 4 (𝜑 → (𝑥𝐴 ↔ (𝑥𝐵𝜓)))
2 ralbidc.2 . . . 4 (𝜑 → ((𝑥𝐴 ∧ (𝑥𝐵𝜓)) → (𝜒𝜃)))
31, 2logic2 46026 . . 3 (𝜑 → ((𝑥𝐴𝜒) ↔ ((𝑥𝐵𝜓) → 𝜃)))
4 impexp 450 . . 3 (((𝑥𝐵𝜓) → 𝜃) ↔ (𝑥𝐵 → (𝜓𝜃)))
53, 4bitrdi 286 . 2 (𝜑 → ((𝑥𝐴𝜒) ↔ (𝑥𝐵 → (𝜓𝜃))))
65ralbidv2 3118 1 (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator