Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralbidc | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb 46145. (Contributed by Zhi Wang, 30-Aug-2024.) |
Ref | Expression |
---|---|
ralbidb.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
ralbidc.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
ralbidc | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidb.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) | |
2 | ralbidc.2 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝜒 ↔ 𝜃))) | |
3 | 1, 2 | logic2 46138 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜒) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜓) → 𝜃))) |
4 | impexp 451 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) → 𝜃) ↔ (𝑥 ∈ 𝐵 → (𝜓 → 𝜃))) | |
5 | 3, 4 | bitrdi 287 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜒) ↔ (𝑥 ∈ 𝐵 → (𝜓 → 𝜃)))) |
6 | 5 | ralbidv2 3110 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |