![]() |
Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofal | Structured version Visualization version GIF version |
Description: There exist at most one set such that ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
mofal | ⊢ ∃*𝑥⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexfal 36371 | . 2 ⊢ ¬ ∃𝑥⊥ | |
2 | exmo 2545 | . 2 ⊢ (∃𝑥⊥ ∨ ∃*𝑥⊥) | |
3 | 1, 2 | mtpor 1768 | 1 ⊢ ∃*𝑥⊥ |
Colors of variables: wff setvar class |
Syntax hints: ⊥wfal 1549 ∃wex 1777 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-mo 2543 |
This theorem is referenced by: nrmo 36376 amosym1 36392 |
Copyright terms: Public domain | W3C validator |