![]() |
Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofal | Structured version Visualization version GIF version |
Description: There exist at most one set such that ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
mofal | ⊢ ∃*𝑥⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexfal 36020 | . 2 ⊢ ¬ ∃𝑥⊥ | |
2 | exmo 2530 | . 2 ⊢ (∃𝑥⊥ ∨ ∃*𝑥⊥) | |
3 | 1, 2 | mtpor 1764 | 1 ⊢ ∃*𝑥⊥ |
Colors of variables: wff setvar class |
Syntax hints: ⊥wfal 1545 ∃wex 1773 ∃*wmo 2526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 |
This theorem depends on definitions: df-bi 206 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-mo 2528 |
This theorem is referenced by: nrmo 36025 amosym1 36041 |
Copyright terms: Public domain | W3C validator |