| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version | ||
| Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2562, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2557. For other possible definitions see moeu 2576 and mo4 2559. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2576, while this definition was then proved as dfmo 2589). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wmo 2531 | . 2 wff ∃*𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1962 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1538 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1779 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 206 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nexmo 2534 moim 2537 moimi 2538 nfmo1 2550 nfmod2 2551 nfmodv 2552 mof 2556 mo3 2557 mo4 2559 eu3v 2563 cbvmovw 2595 cbvmow 2596 sbmo 2607 mopick 2618 2mo2 2640 rmoeq1 3387 mo2icl 3685 rmoanim 3857 axrep6 5243 axrep6OLD 5244 moabex 5419 dffun3 6525 dffun3OLD 6526 dffun6f 6529 grothprim 10787 cbvmodavw 36238 mobidvALT 36845 wl-cbvmotv 37501 wl-moteq 37502 wl-moae 37504 wl-mo2df 37558 wl-mo2t 37563 wl-mo3t 37564 sn-axrep5v 42204 sn-axprlem3 42205 dffrege115 43967 mof0 48826 |
| Copyright terms: Public domain | W3C validator |