| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version | ||
| Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2563, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2558. For other possible definitions see moeu 2577 and mo4 2560. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2577, while this definition was then proved as dfmo 2590). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wmo 2532 | . 2 wff ∃*𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1962 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1538 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1779 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 206 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nexmo 2535 moim 2538 moimi 2539 nfmo1 2551 nfmod2 2552 nfmodv 2553 mof 2557 mo3 2558 mo4 2560 eu3v 2564 cbvmovw 2596 cbvmow 2597 sbmo 2608 mopick 2619 2mo2 2641 rmoeq1 3393 mo2icl 3693 rmoanim 3865 axrep6 5251 axrep6OLD 5252 moabex 5427 dffun3 6533 dffun3OLD 6534 dffun6f 6537 grothprim 10805 cbvmodavw 36235 mobidvALT 36842 wl-cbvmotv 37498 wl-moteq 37499 wl-moae 37501 wl-mo2df 37555 wl-mo2t 37560 wl-mo3t 37561 sn-axrep5v 42196 sn-axprlem3 42197 dffrege115 43939 mof0 48758 |
| Copyright terms: Public domain | W3C validator |