![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version |
Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2612, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2604. For other possible definitions see moeu 2628 and mo4 2607. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2628, while this definition was then proved as dfmo 2641). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wmo 2574 | . 2 wff ∃*𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1941 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
7 | 6, 2 | wal 1520 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
8 | 7, 4 | wex 1761 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | 3, 8 | wb 207 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: nexmo 2577 moim 2580 moimi 2581 mobiOLD 2585 mobidOLD 2590 nfmo1 2597 nfmod2 2598 nfmodv 2599 mof 2603 mo3 2604 mo3OLD 2605 mo4 2607 eu3v 2613 eu6OLDOLD 2620 sbmo 2666 mopick 2680 2mo2 2702 mo2icl 3641 rmoanim 3806 axrep6 5088 moabex 5243 dffun3 6236 dffun6f 6239 grothprim 10102 mobidvALT 33751 wl-cbvmotv 34284 wl-moteq 34285 wl-moae 34287 wl-mo2df 34337 wl-mo2t 34342 wl-mo3t 34343 wl-dfrmosb 34384 wl-dfrmov 34385 wl-dfrmof 34386 sn-axrep5v 38638 sn-axprlem3 38639 dffrege115 39809 |
Copyright terms: Public domain | W3C validator |