| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version | ||
| Description: Define the at-most-one
quantifier.  The expression ∃*𝑥𝜑 is read
       "there exists at most one 𝑥 such that 𝜑".  This is also
called
       the "uniqueness quantifier" but that expression is also used
for the
       unique existential quantifier df-eu 2567, therefore we avoid that
       ambiguous name.
 Notation of [BellMachover] p. 460, whose definition we show as mo3 2562. For other possible definitions see moeu 2581 and mo4 2564. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2581, while this definition was then proved as dfmo 2594). (Revised by BJ, 30-Sep-2022.)  | 
| Ref | Expression | 
|---|---|
| df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wmo 2536 | . 2 wff ∃*𝑥𝜑 | 
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1961 | . . . . 5 wff 𝑥 = 𝑦 | 
| 6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) | 
| 7 | 6, 2 | wal 1537 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) | 
| 8 | 7, 4 | wex 1778 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) | 
| 9 | 3, 8 | wb 206 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: nexmo 2539 moim 2542 moimi 2543 nfmo1 2555 nfmod2 2556 nfmodv 2557 mof 2561 mo3 2562 mo4 2564 eu3v 2568 cbvmovw 2600 cbvmow 2601 sbmo 2612 mopick 2623 2mo2 2645 rmoeq1 3400 mo2icl 3704 rmoanim 3876 axrep6 5270 axrep6OLD 5271 moabex 5446 dffun3 6556 dffun3OLD 6557 dffun6f 6560 grothprim 10857 cbvmodavw 36188 mobidvALT 36795 wl-cbvmotv 37451 wl-moteq 37452 wl-moae 37454 wl-mo2df 37508 wl-mo2t 37513 wl-mo3t 37514 sn-axrep5v 42192 sn-axprlem3 42193 dffrege115 43932 mof0 48689 | 
| Copyright terms: Public domain | W3C validator |