![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version |
Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2567, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2562. For other possible definitions see moeu 2581 and mo4 2564. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2581, while this definition was then proved as dfmo 2594). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wmo 2536 | . 2 wff ∃*𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1960 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
7 | 6, 2 | wal 1535 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
8 | 7, 4 | wex 1776 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | 3, 8 | wb 206 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: nexmo 2539 moim 2542 moimi 2543 nfmo1 2555 nfmod2 2556 nfmodv 2557 mof 2561 mo3 2562 mo4 2564 eu3v 2568 cbvmovw 2600 cbvmow 2601 sbmo 2612 mopick 2623 2mo2 2645 rmoeq1 3414 mo2icl 3723 rmoanim 3903 axrep6 5294 axrep6OLD 5295 moabex 5470 dffun3 6577 dffun3OLD 6578 dffun6f 6581 grothprim 10872 cbvmodavw 36233 mobidvALT 36840 wl-cbvmotv 37494 wl-moteq 37495 wl-moae 37497 wl-mo2df 37551 wl-mo2t 37556 wl-mo3t 37557 sn-axrep5v 42234 sn-axprlem3 42235 dffrege115 43968 mof0 48668 |
Copyright terms: Public domain | W3C validator |