![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version |
Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2564, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2559. For other possible definitions see moeu 2578 and mo4 2561. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2578, while this definition was then proved as dfmo 2591). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wmo 2533 | . 2 wff ∃*𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1967 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
7 | 6, 2 | wal 1540 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
8 | 7, 4 | wex 1782 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | 3, 8 | wb 205 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: nexmo 2536 moim 2539 moimi 2540 nfmo1 2552 nfmod2 2553 nfmodv 2554 mof 2558 mo3 2559 mo4 2561 eu3v 2565 cbvmovw 2597 cbvmow 2598 sbmo 2611 mopick 2622 2mo2 2644 rmoeq1 3415 mo2icl 3711 rmoanim 3889 axrep6 5293 moabex 5460 dffun3 6558 dffun3OLD 6559 dffun6f 6562 grothprim 10829 mobidvALT 35736 wl-cbvmotv 36382 wl-moteq 36383 wl-moae 36385 wl-mo2df 36435 wl-mo2t 36440 wl-mo3t 36441 sn-axrep5v 41033 sn-axprlem3 41034 dffrege115 42729 mof0 47504 |
Copyright terms: Public domain | W3C validator |