Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version |
Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2570, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2565. For other possible definitions see moeu 2584 and mo4 2567. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2584, while this definition was then proved as dfmo 2597). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wmo 2539 | . 2 wff ∃*𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1967 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
7 | 6, 2 | wal 1537 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
8 | 7, 4 | wex 1782 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | 3, 8 | wb 205 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: nexmo 2542 moim 2545 moimi 2546 nfmo1 2558 nfmod2 2559 nfmodv 2560 mof 2564 mo3 2565 mo4 2567 eu3v 2571 cbvmovw 2603 cbvmow 2604 sbmo 2617 mopick 2628 2mo2 2650 mo2icl 3650 rmoanim 3828 axrep6 5217 moabex 5375 dffun3 6450 dffun3OLD 6451 dffun6f 6454 grothprim 10599 mobidvALT 35050 wl-cbvmotv 35681 wl-moteq 35682 wl-moae 35684 wl-mo2df 35734 wl-mo2t 35739 wl-mo3t 35740 sn-axrep5v 40192 sn-axprlem3 40193 dffrege115 41593 mof0 46176 |
Copyright terms: Public domain | W3C validator |