| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version | ||
| Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2564, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2559. For other possible definitions see moeu 2578 and mo4 2561. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2578, while this definition was then proved as dfmo 2591). (Revised by BJ, 30-Sep-2022.) |
| Ref | Expression |
|---|---|
| df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | wmo 2533 | . 2 wff ∃*𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1963 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1539 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1780 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 206 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nexmo 2536 moim 2539 moimi 2540 nfmo1 2552 nfmod2 2553 nfmodv 2554 mof 2558 mo3 2559 mo4 2561 eu3v 2565 cbvmovw 2597 cbvmow 2598 sbmo 2609 mopick 2620 2mo2 2642 rmoeq1 3377 mo2icl 3668 rmoanim 3840 axrep6 5224 axrep6OLD 5225 moabex 5397 dffun3 6493 dffun6f 6496 grothprim 10725 cbvmodavw 36294 mobidvALT 36901 wl-cbvmotv 37557 wl-moteq 37558 wl-moae 37560 wl-mo2df 37614 wl-mo2t 37619 wl-mo3t 37620 sn-axrep5v 42319 sn-axprlem3 42320 dffrege115 44081 mof0 48948 |
| Copyright terms: Public domain | W3C validator |