Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-mo | Structured version Visualization version GIF version |
Description: Define the at-most-one
quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2569, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2564. For other possible definitions see moeu 2583 and mo4 2566. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2583, while this definition was then proved as dfmo 2596). (Revised by BJ, 30-Sep-2022.) |
Ref | Expression |
---|---|
df-mo | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wmo 2538 | . 2 wff ∃*𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1967 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wi 4 | . . . 4 wff (𝜑 → 𝑥 = 𝑦) |
7 | 6, 2 | wal 1537 | . . 3 wff ∀𝑥(𝜑 → 𝑥 = 𝑦) |
8 | 7, 4 | wex 1783 | . 2 wff ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | 3, 8 | wb 205 | 1 wff (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: nexmo 2541 moim 2544 moimi 2545 nfmo1 2557 nfmod2 2558 nfmodv 2559 mof 2563 mo3 2564 mo4 2566 eu3v 2570 cbvmovw 2602 cbvmow 2603 sbmo 2616 mopick 2627 2mo2 2649 mo2icl 3644 rmoanim 3823 axrep6 5212 moabex 5368 dffun3 6429 dffun6f 6432 grothprim 10521 mobidvALT 34968 wl-cbvmotv 35599 wl-moteq 35600 wl-moae 35602 wl-mo2df 35652 wl-mo2t 35657 wl-mo3t 35658 sn-axrep5v 40113 sn-axprlem3 40114 dffrege115 41475 mof0 46053 |
Copyright terms: Public domain | W3C validator |