Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amosym1 | Structured version Visualization version GIF version |
Description: A symmetry with ∃*.
See negsym1 34606 for more information. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
amosym1 | ⊢ (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2583 | . 2 ⊢ (∃*𝑥∃*𝑥⊥ ↔ (∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥)) | |
2 | mofal 34598 | . . . . 5 ⊢ ∃*𝑥⊥ | |
3 | 19.8a 2174 | . . . . . 6 ⊢ (∃*𝑥⊥ → ∃𝑥∃*𝑥⊥) | |
4 | 3 | notnotd 144 | . . . . 5 ⊢ (∃*𝑥⊥ → ¬ ¬ ∃𝑥∃*𝑥⊥) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ ¬ ¬ ∃𝑥∃*𝑥⊥ |
6 | 5 | pm2.21i 119 | . . 3 ⊢ (¬ ∃𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
7 | 2 | notnoti 143 | . . . . . 6 ⊢ ¬ ¬ ∃*𝑥⊥ |
8 | 7 | nex 1803 | . . . . 5 ⊢ ¬ ∃𝑥 ¬ ∃*𝑥⊥ |
9 | eunex 5313 | . . . . 5 ⊢ (∃!𝑥∃*𝑥⊥ → ∃𝑥 ¬ ∃*𝑥⊥) | |
10 | 8, 9 | mto 196 | . . . 4 ⊢ ¬ ∃!𝑥∃*𝑥⊥ |
11 | 10 | pm2.21i 119 | . . 3 ⊢ (∃!𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
12 | 6, 11 | ja 186 | . 2 ⊢ ((∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥) → ∃*𝑥𝜑) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 ∃wex 1782 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |