Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amosym1 Structured version   Visualization version   GIF version

Theorem amosym1 32742
Description: A symmetry with ∃*.

See negsym1 32733 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

Assertion
Ref Expression
amosym1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)

Proof of Theorem amosym1
StepHypRef Expression
1 df-mo 2635 . 2 (∃*𝑥∃*𝑥⊥ ↔ (∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥))
2 mof 32726 . . . . 5 ∃*𝑥
3 19.8a 2217 . . . . . 6 (∃*𝑥⊥ → ∃𝑥∃*𝑥⊥)
43notnotd 140 . . . . 5 (∃*𝑥⊥ → ¬ ¬ ∃𝑥∃*𝑥⊥)
52, 4ax-mp 5 . . . 4 ¬ ¬ ∃𝑥∃*𝑥
65pm2.21i 117 . . 3 (¬ ∃𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
72notnoti 139 . . . . . 6 ¬ ¬ ∃*𝑥
87nex 1882 . . . . 5 ¬ ∃𝑥 ¬ ∃*𝑥
9 eunex 5059 . . . . 5 (∃!𝑥∃*𝑥⊥ → ∃𝑥 ¬ ∃*𝑥⊥)
108, 9mto 188 . . . 4 ¬ ∃!𝑥∃*𝑥
1110pm2.21i 117 . . 3 (∃!𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
126, 11ja 174 . 2 ((∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥) → ∃*𝑥𝜑)
131, 12sylbi 208 1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1650  wex 1859  ∃!weu 2630  ∃*wmo 2631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-nul 4983  ax-pow 5035
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-eu 2634  df-mo 2635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator