Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amosym1 Structured version   Visualization version   GIF version

Theorem amosym1 34542
Description: A symmetry with ∃*.

See negsym1 34533 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

Assertion
Ref Expression
amosym1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)

Proof of Theorem amosym1
StepHypRef Expression
1 moeu 2583 . 2 (∃*𝑥∃*𝑥⊥ ↔ (∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥))
2 mofal 34525 . . . . 5 ∃*𝑥
3 19.8a 2176 . . . . . 6 (∃*𝑥⊥ → ∃𝑥∃*𝑥⊥)
43notnotd 144 . . . . 5 (∃*𝑥⊥ → ¬ ¬ ∃𝑥∃*𝑥⊥)
52, 4ax-mp 5 . . . 4 ¬ ¬ ∃𝑥∃*𝑥
65pm2.21i 119 . . 3 (¬ ∃𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
72notnoti 143 . . . . . 6 ¬ ¬ ∃*𝑥
87nex 1804 . . . . 5 ¬ ∃𝑥 ¬ ∃*𝑥
9 eunex 5308 . . . . 5 (∃!𝑥∃*𝑥⊥ → ∃𝑥 ¬ ∃*𝑥⊥)
108, 9mto 196 . . . 4 ¬ ∃!𝑥∃*𝑥
1110pm2.21i 119 . . 3 (∃!𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
126, 11ja 186 . 2 ((∃𝑥∃*𝑥⊥ → ∃!𝑥∃*𝑥⊥) → ∃*𝑥𝜑)
131, 12sylbi 216 1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1551  wex 1783  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator