Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > amosym1 | Structured version Visualization version GIF version |
Description: A symmetry with ∃*.
See negsym1 34676 for more information. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
amosym1 | ⊢ (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofal 34668 | . . 3 ⊢ ∃*𝑥⊥ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∃*𝑥⊥) |
3 | 2 | moimi 2543 | 1 ⊢ (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1552 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 |
This theorem depends on definitions: df-bi 206 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-mo 2538 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |