Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amosym1 Structured version   Visualization version   GIF version

Theorem amosym1 34685
Description: A symmetry with ∃*.

See negsym1 34676 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

Assertion
Ref Expression
amosym1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)

Proof of Theorem amosym1
StepHypRef Expression
1 mofal 34668 . . 3 ∃*𝑥
21a1i 11 . 2 (𝜑 → ∃*𝑥⊥)
32moimi 2543 1 (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1552  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970
This theorem depends on definitions:  df-bi 206  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-mo 2538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator