Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nrmo | Structured version Visualization version GIF version |
Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
nrmo.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) |
Ref | Expression |
---|---|
nrmo | ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofal 34577 | . . 3 ⊢ ∃*𝑥⊥ | |
2 | nrmo.1 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) | |
3 | 2 | imori 850 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑) |
4 | ianor 978 | . . . . . 6 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑)) | |
5 | 3, 4 | mpbir 230 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | bifal 1557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ⊥) |
7 | 6 | mobii 2549 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥⊥) |
8 | 1, 7 | mpbir 230 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | df-rmo 3073 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ⊥wfal 1553 ∈ wcel 2109 ∃*wmo 2539 ∃*wrmo 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-mo 2541 df-rmo 3073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |