| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nrmo | Structured version Visualization version GIF version | ||
| Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| Ref | Expression |
|---|---|
| nrmo.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| nrmo | ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mofal 36427 | . . 3 ⊢ ∃*𝑥⊥ | |
| 2 | nrmo.1 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) | |
| 3 | 2 | imori 854 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑) |
| 4 | ianor 983 | . . . . . 6 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑)) | |
| 5 | 3, 4 | mpbir 231 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 6 | 5 | bifal 1556 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ⊥) |
| 7 | 6 | mobii 2547 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥⊥) |
| 8 | 1, 7 | mpbir 231 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | df-rmo 3359 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ⊥wfal 1552 ∈ wcel 2108 ∃*wmo 2537 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-mo 2539 df-rmo 3359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |