Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nrmo | Structured version Visualization version GIF version |
Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
nrmo.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) |
Ref | Expression |
---|---|
nrmo | ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofal 34647 | . . 3 ⊢ ∃*𝑥⊥ | |
2 | nrmo.1 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) | |
3 | 2 | imori 852 | . . . . . 6 ⊢ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑) |
4 | ianor 980 | . . . . . 6 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝜑)) | |
5 | 3, 4 | mpbir 230 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | bifal 1555 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ⊥) |
7 | 6 | mobii 2546 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥⊥) |
8 | 1, 7 | mpbir 230 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | df-rmo 3304 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ ∃*𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 ⊥wfal 1551 ∈ wcel 2104 ∃*wmo 2536 ∃*wrmo 3302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-mo 2538 df-rmo 3304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |