Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nrmo Structured version   Visualization version   GIF version

Theorem nrmo 35283
Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypothesis
Ref Expression
nrmo.1 (𝑥𝐴 → ¬ 𝜑)
Assertion
Ref Expression
nrmo ∃*𝑥𝐴 𝜑

Proof of Theorem nrmo
StepHypRef Expression
1 mofal 35282 . . 3 ∃*𝑥
2 nrmo.1 . . . . . . 7 (𝑥𝐴 → ¬ 𝜑)
32imori 852 . . . . . 6 𝑥𝐴 ∨ ¬ 𝜑)
4 ianor 980 . . . . . 6 (¬ (𝑥𝐴𝜑) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝜑))
53, 4mpbir 230 . . . . 5 ¬ (𝑥𝐴𝜑)
65bifal 1557 . . . 4 ((𝑥𝐴𝜑) ↔ ⊥)
76mobii 2542 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥⊥)
81, 7mpbir 230 . 2 ∃*𝑥(𝑥𝐴𝜑)
9 df-rmo 3376 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
108, 9mpbir 230 1 ∃*𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  wfal 1553  wcel 2106  ∃*wmo 2532  ∃*wrmo 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-mo 2534  df-rmo 3376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator