MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt2i Structured version   Visualization version   GIF version

Theorem mt2i 137
Description: Modus tollens inference. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Wolf Lammen, 15-Sep-2012.)
Hypotheses
Ref Expression
mt2i.1 𝜒
mt2i.2 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
mt2i (𝜑 → ¬ 𝜓)

Proof of Theorem mt2i
StepHypRef Expression
1 mt2i.1 . . 3 𝜒
21a1i 11 . 2 (𝜑𝜒)
3 mt2i.2 . 2 (𝜑 → (𝜓 → ¬ 𝜒))
42, 3mt2d 136 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  ssnlim  7707  elirrv  9285  konigthlem  10255  ipo0  41956  ifr0  41957
  Copyright terms: Public domain W3C validator