| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5302 reusv2lem2 5349 reldmtpos 8190 tz7.49 8390 omopthlem2 8601 domnsym 9044 sdomirr 9055 infensuc 9096 domnsymfi 9141 fofinf1o 9259 elfi2 9341 infdifsn 9586 carden2b 9896 alephsucdom 10008 infdif2 10138 fin4i 10227 fin45 10321 bitsf1 16392 pcmpt2 16840 symgvalstruct 19311 ufinffr 23849 eldmgm 26965 lgamucov 26981 facgam 27009 chtub 27156 cuteq1 27783 cofcutr 27872 lfgrnloop 29105 umgredgnlp 29127 clwwlkn0 30007 eupth2lem1 30197 rtelextdg2lem 33709 oddpwdc 34338 bnj1312 35041 erdszelem10 35180 heiborlem1 37798 osumcllem4N 39946 pexmidlem1N 39957 fimgmcyc 42515 fphpd 42797 0nodd 48151 |
| Copyright terms: Public domain | W3C validator |