| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5307 reusv2lem2 5354 reldmtpos 8213 tz7.49 8413 omopthlem2 8624 domnsym 9067 sdomirr 9078 infensuc 9119 domnsymfi 9164 fofinf1o 9283 elfi2 9365 infdifsn 9610 carden2b 9920 alephsucdom 10032 infdif2 10162 fin4i 10251 fin45 10345 bitsf1 16416 pcmpt2 16864 symgvalstruct 19327 ufinffr 23816 eldmgm 26932 lgamucov 26948 facgam 26976 chtub 27123 cuteq1 27746 cofcutr 27832 lfgrnloop 29052 umgredgnlp 29074 clwwlkn0 29957 eupth2lem1 30147 rtelextdg2lem 33716 oddpwdc 34345 bnj1312 35048 erdszelem10 35187 heiborlem1 37805 osumcllem4N 39953 pexmidlem1N 39964 fimgmcyc 42522 fphpd 42804 0nodd 48158 |
| Copyright terms: Public domain | W3C validator |