MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyl3 Structured version   Visualization version   GIF version

Theorem nsyl3 138
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.)
Hypotheses
Ref Expression
nsyl3.1 (𝜑 → ¬ 𝜓)
nsyl3.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl3 (𝜒 → ¬ 𝜑)

Proof of Theorem nsyl3
StepHypRef Expression
1 nsyl3.2 . 2 (𝜒𝜓)
2 nsyl3.1 . . 3 (𝜑 → ¬ 𝜓)
32a1i 11 . 2 (𝜒 → (𝜑 → ¬ 𝜓))
41, 3mt2d 136 1 (𝜒 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con2i  139  nsyl  140  nsyl2  141  pwnss  5291  reusv2lem2  5338  reldmtpos  8167  tz7.49  8367  omopthlem2  8578  domnsym  9020  sdomirr  9031  infensuc  9072  domnsymfi  9114  fofinf1o  9222  elfi2  9304  infdifsn  9553  carden2b  9863  alephsucdom  9973  infdif2  10103  fin4i  10192  fin45  10286  bitsf1  16357  pcmpt2  16805  symgvalstruct  19276  ufinffr  23814  eldmgm  26930  lgamucov  26946  facgam  26974  chtub  27121  cuteq1  27748  cofcutr  27837  lfgrnloop  29070  umgredgnlp  29092  clwwlkn0  29972  eupth2lem1  30162  rtelextdg2lem  33699  oddpwdc  34328  bnj1312  35031  erdszelem10  35183  heiborlem1  37801  osumcllem4N  39948  pexmidlem1N  39959  fimgmcyc  42517  fphpd  42799  0nodd  48164
  Copyright terms: Public domain W3C validator