| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5310 reusv2lem2 5357 reldmtpos 8216 tz7.49 8416 omopthlem2 8627 domnsym 9073 sdomirr 9084 infensuc 9125 domnsymfi 9170 fofinf1o 9290 elfi2 9372 infdifsn 9617 carden2b 9927 alephsucdom 10039 infdif2 10169 fin4i 10258 fin45 10352 bitsf1 16423 pcmpt2 16871 symgvalstruct 19334 ufinffr 23823 eldmgm 26939 lgamucov 26955 facgam 26983 chtub 27130 cuteq1 27753 cofcutr 27839 lfgrnloop 29059 umgredgnlp 29081 clwwlkn0 29964 eupth2lem1 30154 rtelextdg2lem 33723 oddpwdc 34352 bnj1312 35055 erdszelem10 35194 heiborlem1 37812 osumcllem4N 39960 pexmidlem1N 39971 fimgmcyc 42529 fphpd 42811 0nodd 48162 |
| Copyright terms: Public domain | W3C validator |