![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl3.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5370 reusv2lem2 5417 reldmtpos 8275 tz7.49 8501 omopthlem2 8716 domnsym 9165 sdomirr 9180 infensuc 9221 domnsymfi 9266 fofinf1o 9400 elfi2 9483 infdifsn 9726 carden2b 10036 alephsucdom 10148 infdif2 10278 fin4i 10367 fin45 10461 bitsf1 16492 pcmpt2 16940 symgvalstruct 19438 symgvalstructOLD 19439 ufinffr 23958 eldmgm 27083 lgamucov 27099 facgam 27127 chtub 27274 cuteq1 27896 cofcutr 27976 lfgrnloop 29160 umgredgnlp 29182 clwwlkn0 30060 eupth2lem1 30250 rtelextdg2lem 33717 oddpwdc 34319 bnj1312 35034 erdszelem10 35168 heiborlem1 37771 osumcllem4N 39916 pexmidlem1N 39927 fimgmcyc 42489 fphpd 42772 0nodd 47893 |
Copyright terms: Public domain | W3C validator |