![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl3.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5350 reusv2lem2 5398 reldmtpos 8223 tz7.49 8449 omopthlem2 8663 domnsym 9103 sdomirr 9118 infensuc 9159 domnsymfi 9207 fofinf1o 9331 elfi2 9413 infdifsn 9656 carden2b 9966 alephsucdom 10078 infdif2 10209 fin4i 10297 fin45 10391 bitsf1 16393 pcmpt2 16832 symgvalstruct 19307 symgvalstructOLD 19308 ufinffr 23655 eldmgm 26760 lgamucov 26776 facgam 26804 chtub 26949 cuteq1 27569 cofcutr 27647 lfgrnloop 28650 umgredgnlp 28672 clwwlkn0 29546 eupth2lem1 29736 oddpwdc 33649 bnj1312 34365 erdszelem10 34487 heiborlem1 36984 osumcllem4N 39135 pexmidlem1N 39146 fphpd 41858 0nodd 46848 |
Copyright terms: Public domain | W3C validator |