![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl3.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5358 reusv2lem2 5405 reldmtpos 8258 tz7.49 8484 omopthlem2 8697 domnsym 9138 sdomirr 9153 infensuc 9194 domnsymfi 9238 fofinf1o 9370 elfi2 9452 infdifsn 9695 carden2b 10005 alephsucdom 10117 infdif2 10247 fin4i 10336 fin45 10430 bitsf1 16480 pcmpt2 16927 symgvalstruct 19429 symgvalstructOLD 19430 ufinffr 23953 eldmgm 27080 lgamucov 27096 facgam 27124 chtub 27271 cuteq1 27893 cofcutr 27973 lfgrnloop 29157 umgredgnlp 29179 clwwlkn0 30057 eupth2lem1 30247 rtelextdg2lem 33732 oddpwdc 34336 bnj1312 35051 erdszelem10 35185 heiborlem1 37798 osumcllem4N 39942 pexmidlem1N 39953 fimgmcyc 42521 fphpd 42804 0nodd 48014 |
Copyright terms: Public domain | W3C validator |