| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5291 reusv2lem2 5338 reldmtpos 8167 tz7.49 8367 omopthlem2 8578 domnsym 9020 sdomirr 9031 infensuc 9072 domnsymfi 9114 fofinf1o 9222 elfi2 9304 infdifsn 9553 carden2b 9863 alephsucdom 9973 infdif2 10103 fin4i 10192 fin45 10286 bitsf1 16357 pcmpt2 16805 symgvalstruct 19276 ufinffr 23814 eldmgm 26930 lgamucov 26946 facgam 26974 chtub 27121 cuteq1 27748 cofcutr 27837 lfgrnloop 29070 umgredgnlp 29092 clwwlkn0 29972 eupth2lem1 30162 rtelextdg2lem 33699 oddpwdc 34328 bnj1312 35031 erdszelem10 35183 heiborlem1 37801 osumcllem4N 39948 pexmidlem1N 39959 fimgmcyc 42517 fphpd 42799 0nodd 48164 |
| Copyright terms: Public domain | W3C validator |