| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5288 reusv2lem2 5335 reldmtpos 8164 tz7.49 8364 omopthlem2 8575 domnsym 9016 sdomirr 9027 infensuc 9068 domnsymfi 9109 fofinf1o 9216 elfi2 9298 infdifsn 9547 carden2b 9860 alephsucdom 9970 infdif2 10100 fin4i 10189 fin45 10283 bitsf1 16357 pcmpt2 16805 symgvalstruct 19309 ufinffr 23844 eldmgm 26959 lgamucov 26975 facgam 27003 chtub 27150 cuteq1 27778 cofcutr 27868 lfgrnloop 29103 umgredgnlp 29125 clwwlkn0 30008 eupth2lem1 30198 rtelextdg2lem 33739 oddpwdc 34367 bnj1312 35070 erdszelem10 35244 heiborlem1 37850 osumcllem4N 40057 pexmidlem1N 40068 fimgmcyc 42626 fphpd 42908 0nodd 48269 |
| Copyright terms: Public domain | W3C validator |