Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
nsyl3.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5267 reusv2lem2 5317 reldmtpos 8021 tz7.49 8246 omopthlem2 8450 domnsym 8839 sdomirr 8850 infensuc 8891 fofinf1o 9024 elfi2 9103 infdifsn 9345 carden2b 9656 alephsucdom 9766 infdif2 9897 fin4i 9985 fin45 10079 bitsf1 16081 pcmpt2 16522 symgvalstruct 18919 symgvalstructOLD 18920 ufinffr 22988 eldmgm 26076 lgamucov 26092 facgam 26120 chtub 26265 lfgrnloop 27398 umgredgnlp 27420 clwwlkn0 28293 eupth2lem1 28483 oddpwdc 32221 bnj1312 32938 erdszelem10 33062 cofcutr 34019 heiborlem1 35896 osumcllem4N 37900 pexmidlem1N 37911 fphpd 40554 0nodd 45252 |
Copyright terms: Public domain | W3C validator |