| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl3 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
| Ref | Expression |
|---|---|
| nsyl3.1 | ⊢ (𝜑 → ¬ 𝜓) |
| nsyl3.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| nsyl3 | ⊢ (𝜒 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl3.2 | . 2 ⊢ (𝜒 → 𝜓) | |
| 2 | nsyl3.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → ¬ 𝜓)) |
| 4 | 1, 3 | mt2d 136 | 1 ⊢ (𝜒 → ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: con2i 139 nsyl 140 nsyl2 141 pwnss 5322 reusv2lem2 5369 reldmtpos 8233 tz7.49 8459 omopthlem2 8672 domnsym 9113 sdomirr 9128 infensuc 9169 domnsymfi 9214 fofinf1o 9344 elfi2 9426 infdifsn 9671 carden2b 9981 alephsucdom 10093 infdif2 10223 fin4i 10312 fin45 10406 bitsf1 16465 pcmpt2 16913 symgvalstruct 19378 ufinffr 23867 eldmgm 26984 lgamucov 27000 facgam 27028 chtub 27175 cuteq1 27798 cofcutr 27884 lfgrnloop 29104 umgredgnlp 29126 clwwlkn0 30009 eupth2lem1 30199 rtelextdg2lem 33760 oddpwdc 34386 bnj1312 35089 erdszelem10 35222 heiborlem1 37835 osumcllem4N 39978 pexmidlem1N 39989 fimgmcyc 42557 fphpd 42839 0nodd 48145 |
| Copyright terms: Public domain | W3C validator |