Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipo0 Structured version   Visualization version   GIF version

Theorem ipo0 43198
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ipo0 ( I Po 𝐴𝐴 = ∅)

Proof of Theorem ipo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2015 . . . . 5 𝑥 = 𝑥
2 vex 3478 . . . . . 6 𝑥 ∈ V
32ideq 5852 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 230 . . . 4 𝑥 I 𝑥
5 poirr 5600 . . . . 5 (( I Po 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 413 . . . 4 ( I Po 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Po 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4404 . 2 ( I Po 𝐴𝐴 = ∅)
9 po0 5605 . . 3 I Po ∅
10 poeq2 5592 . . 3 (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅))
119, 10mpbiri 257 . 2 (𝐴 = ∅ → I Po 𝐴)
128, 11impbii 208 1 ( I Po 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  c0 4322   class class class wbr 5148   I cid 5573   Po wpo 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-po 5588  df-xp 5682  df-rel 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator