![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipo0 | Structured version Visualization version GIF version |
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ipo0 | ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2015 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | ideq 5852 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝑥 I 𝑥 |
5 | poirr 5600 | . . . . 5 ⊢ (( I Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
6 | 5 | ex 413 | . . . 4 ⊢ ( I Po 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
7 | 4, 6 | mt2i 137 | . . 3 ⊢ ( I Po 𝐴 → ¬ 𝑥 ∈ 𝐴) |
8 | 7 | eq0rdv 4404 | . 2 ⊢ ( I Po 𝐴 → 𝐴 = ∅) |
9 | po0 5605 | . . 3 ⊢ I Po ∅ | |
10 | poeq2 5592 | . . 3 ⊢ (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅)) | |
11 | 9, 10 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → I Po 𝐴) |
12 | 8, 11 | impbii 208 | 1 ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∅c0 4322 class class class wbr 5148 I cid 5573 Po wpo 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-po 5588 df-xp 5682 df-rel 5683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |