Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipo0 Structured version   Visualization version   GIF version

Theorem ipo0 42438
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ipo0 ( I Po 𝐴𝐴 = ∅)

Proof of Theorem ipo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2015 . . . . 5 𝑥 = 𝑥
2 vex 3446 . . . . . 6 𝑥 ∈ V
32ideq 5799 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 230 . . . 4 𝑥 I 𝑥
5 poirr 5549 . . . . 5 (( I Po 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 414 . . . 4 ( I Po 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Po 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4356 . 2 ( I Po 𝐴𝐴 = ∅)
9 po0 5554 . . 3 I Po ∅
10 poeq2 5541 . . 3 (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → I Po 𝐴)
128, 11impbii 208 1 ( I Po 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  c0 4274   class class class wbr 5097   I cid 5522   Po wpo 5535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-id 5523  df-po 5537  df-xp 5631  df-rel 5632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator