![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipo0 | Structured version Visualization version GIF version |
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ipo0 | ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2011 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | ideq 5872 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝑥 I 𝑥 |
5 | poirr 5619 | . . . . 5 ⊢ (( I Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
6 | 5 | ex 412 | . . . 4 ⊢ ( I Po 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
7 | 4, 6 | mt2i 137 | . . 3 ⊢ ( I Po 𝐴 → ¬ 𝑥 ∈ 𝐴) |
8 | 7 | eq0rdv 4430 | . 2 ⊢ ( I Po 𝐴 → 𝐴 = ∅) |
9 | po0 5624 | . . 3 ⊢ I Po ∅ | |
10 | poeq2 5611 | . . 3 ⊢ (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅)) | |
11 | 9, 10 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → I Po 𝐴) |
12 | 8, 11 | impbii 209 | 1 ⊢ ( I Po 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 I cid 5592 Po wpo 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-po 5607 df-xp 5701 df-rel 5702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |