Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipo0 Structured version   Visualization version   GIF version

Theorem ipo0 44413
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ipo0 ( I Po 𝐴𝐴 = ∅)

Proof of Theorem ipo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2011 . . . . 5 𝑥 = 𝑥
2 vex 3492 . . . . . 6 𝑥 ∈ V
32ideq 5872 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 231 . . . 4 𝑥 I 𝑥
5 poirr 5619 . . . . 5 (( I Po 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 412 . . . 4 ( I Po 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Po 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4430 . 2 ( I Po 𝐴𝐴 = ∅)
9 po0 5624 . . 3 I Po ∅
10 poeq2 5611 . . 3 (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → I Po 𝐴)
128, 11impbii 209 1 ( I Po 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  c0 4352   class class class wbr 5166   I cid 5592   Po wpo 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-po 5607  df-xp 5701  df-rel 5702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator