| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8333 sdomdomtr 9030 domsdomtr 9032 infdif 10106 ackbij1b 10136 isf32lem5 10255 alephreg 10480 cfpwsdom 10482 inar1 10673 tskcard 10679 npomex 10894 recnz 12554 rpnnen1lem5 12881 fznuz 13511 uznfz 13512 seqcoll2 14374 ramub1lem1 16940 chnccat 18534 pgpfac1lem1 19990 lsppratlem6 21091 nconnsubb 23339 iunconnlem 23343 clsconn 23346 xkohaus 23569 reconnlem1 24743 ivthlem2 25381 perfectlem1 27168 lgseisenlem1 27314 ex-natded5.8-2 30396 oddpwdc 34388 erdszelem9 35264 relowlpssretop 37429 sucneqond 37430 heiborlem8 37878 lcvntr 39145 ncvr1 39391 llnneat 39633 2atnelpln 39663 lplnneat 39664 lplnnelln 39665 3atnelvolN 39705 lvolneatN 39707 lvolnelln 39708 lvolnelpln 39709 lplncvrlvol 39735 4atexlemntlpq 40187 cdleme0nex 40409 nlimsuc 43558 |
| Copyright terms: Public domain | W3C validator |