![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8408 sdomdomtr 9110 domsdomtr 9112 infdif 10204 ackbij1b 10234 isf32lem5 10352 alephreg 10577 cfpwsdom 10579 inar1 10770 tskcard 10776 npomex 10991 recnz 12637 rpnnen1lem5 12965 fznuz 13583 uznfz 13584 seqcoll2 14426 ramub1lem1 16959 pgpfac1lem1 19944 lsppratlem6 20765 nconnsubb 22927 iunconnlem 22931 clsconn 22934 xkohaus 23157 reconnlem1 24342 ivthlem2 24969 perfectlem1 26732 lgseisenlem1 26878 ex-natded5.8-2 29667 oddpwdc 33353 erdszelem9 34190 relowlpssretop 36245 sucneqond 36246 heiborlem8 36686 lcvntr 37896 ncvr1 38142 llnneat 38385 2atnelpln 38415 lplnneat 38416 lplnnelln 38417 3atnelvolN 38457 lvolneatN 38459 lvolnelln 38460 lvolnelpln 38461 lplncvrlvol 38487 4atexlemntlpq 38939 cdleme0nex 39161 nlimsuc 42192 |
Copyright terms: Public domain | W3C validator |