![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8464 sdomdomtr 9176 domsdomtr 9178 infdif 10277 ackbij1b 10307 isf32lem5 10426 alephreg 10651 cfpwsdom 10653 inar1 10844 tskcard 10850 npomex 11065 recnz 12718 rpnnen1lem5 13046 fznuz 13666 uznfz 13667 seqcoll2 14514 ramub1lem1 17073 pgpfac1lem1 20118 lsppratlem6 21177 nconnsubb 23452 iunconnlem 23456 clsconn 23459 xkohaus 23682 reconnlem1 24867 ivthlem2 25506 perfectlem1 27291 lgseisenlem1 27437 ex-natded5.8-2 30446 oddpwdc 34319 erdszelem9 35167 relowlpssretop 37330 sucneqond 37331 heiborlem8 37778 lcvntr 38982 ncvr1 39228 llnneat 39471 2atnelpln 39501 lplnneat 39502 lplnnelln 39503 3atnelvolN 39543 lvolneatN 39545 lvolnelln 39546 lvolnelpln 39547 lplncvrlvol 39573 4atexlemntlpq 40025 cdleme0nex 40247 nlimsuc 43403 |
Copyright terms: Public domain | W3C validator |