Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8210 sdomdomtr 8846 domsdomtr 8848 infdif 9896 ackbij1b 9926 isf32lem5 10044 alephreg 10269 cfpwsdom 10271 inar1 10462 tskcard 10468 npomex 10683 recnz 12325 rpnnen1lem5 12650 fznuz 13267 uznfz 13268 seqcoll2 14107 ramub1lem1 16655 pgpfac1lem1 19592 lsppratlem6 20329 nconnsubb 22482 iunconnlem 22486 clsconn 22489 xkohaus 22712 reconnlem1 23895 ivthlem2 24521 perfectlem1 26282 lgseisenlem1 26428 ex-natded5.8-2 28679 oddpwdc 32221 erdszelem9 33061 relowlpssretop 35462 sucneqond 35463 heiborlem8 35903 lcvntr 36967 ncvr1 37213 llnneat 37455 2atnelpln 37485 lplnneat 37486 lplnnelln 37487 3atnelvolN 37527 lvolneatN 37529 lvolnelln 37530 lvolnelpln 37531 lplncvrlvol 37557 4atexlemntlpq 38009 cdleme0nex 38231 |
Copyright terms: Public domain | W3C validator |