| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8376 sdomdomtr 9074 domsdomtr 9076 infdif 10161 ackbij1b 10191 isf32lem5 10310 alephreg 10535 cfpwsdom 10537 inar1 10728 tskcard 10734 npomex 10949 recnz 12609 rpnnen1lem5 12940 fznuz 13570 uznfz 13571 seqcoll2 14430 ramub1lem1 16997 pgpfac1lem1 20006 lsppratlem6 21062 nconnsubb 23310 iunconnlem 23314 clsconn 23317 xkohaus 23540 reconnlem1 24715 ivthlem2 25353 perfectlem1 27140 lgseisenlem1 27286 ex-natded5.8-2 30343 oddpwdc 34345 erdszelem9 35186 relowlpssretop 37352 sucneqond 37353 heiborlem8 37812 lcvntr 39019 ncvr1 39265 llnneat 39508 2atnelpln 39538 lplnneat 39539 lplnnelln 39540 3atnelvolN 39580 lvolneatN 39582 lvolnelln 39583 lvolnelpln 39584 lplncvrlvol 39610 4atexlemntlpq 40062 cdleme0nex 40284 nlimsuc 43430 |
| Copyright terms: Public domain | W3C validator |