| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8448 sdomdomtr 9150 domsdomtr 9152 infdif 10248 ackbij1b 10278 isf32lem5 10397 alephreg 10622 cfpwsdom 10624 inar1 10815 tskcard 10821 npomex 11036 recnz 12693 rpnnen1lem5 13023 fznuz 13649 uznfz 13650 seqcoll2 14504 ramub1lem1 17064 pgpfac1lem1 20094 lsppratlem6 21154 nconnsubb 23431 iunconnlem 23435 clsconn 23438 xkohaus 23661 reconnlem1 24848 ivthlem2 25487 perfectlem1 27273 lgseisenlem1 27419 ex-natded5.8-2 30433 oddpwdc 34356 erdszelem9 35204 relowlpssretop 37365 sucneqond 37366 heiborlem8 37825 lcvntr 39027 ncvr1 39273 llnneat 39516 2atnelpln 39546 lplnneat 39547 lplnnelln 39548 3atnelvolN 39588 lvolneatN 39590 lvolnelln 39591 lvolnelpln 39592 lplncvrlvol 39618 4atexlemntlpq 40070 cdleme0nex 40292 nlimsuc 43454 |
| Copyright terms: Public domain | W3C validator |