| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8379 sdomdomtr 9080 domsdomtr 9082 infdif 10168 ackbij1b 10198 isf32lem5 10317 alephreg 10542 cfpwsdom 10544 inar1 10735 tskcard 10741 npomex 10956 recnz 12616 rpnnen1lem5 12947 fznuz 13577 uznfz 13578 seqcoll2 14437 ramub1lem1 17004 pgpfac1lem1 20013 lsppratlem6 21069 nconnsubb 23317 iunconnlem 23321 clsconn 23324 xkohaus 23547 reconnlem1 24722 ivthlem2 25360 perfectlem1 27147 lgseisenlem1 27293 ex-natded5.8-2 30350 oddpwdc 34352 erdszelem9 35193 relowlpssretop 37359 sucneqond 37360 heiborlem8 37819 lcvntr 39026 ncvr1 39272 llnneat 39515 2atnelpln 39545 lplnneat 39546 lplnnelln 39547 3atnelvolN 39587 lvolneatN 39589 lvolnelln 39590 lvolnelpln 39591 lplncvrlvol 39617 4atexlemntlpq 40069 cdleme0nex 40291 nlimsuc 43437 |
| Copyright terms: Public domain | W3C validator |