| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8337 sdomdomtr 9034 domsdomtr 9036 infdif 10121 ackbij1b 10151 isf32lem5 10270 alephreg 10495 cfpwsdom 10497 inar1 10688 tskcard 10694 npomex 10909 recnz 12569 rpnnen1lem5 12900 fznuz 13530 uznfz 13531 seqcoll2 14390 ramub1lem1 16956 pgpfac1lem1 19973 lsppratlem6 21077 nconnsubb 23326 iunconnlem 23330 clsconn 23333 xkohaus 23556 reconnlem1 24731 ivthlem2 25369 perfectlem1 27156 lgseisenlem1 27302 ex-natded5.8-2 30376 oddpwdc 34321 erdszelem9 35171 relowlpssretop 37337 sucneqond 37338 heiborlem8 37797 lcvntr 39004 ncvr1 39250 llnneat 39493 2atnelpln 39523 lplnneat 39524 lplnnelln 39525 3atnelvolN 39565 lvolneatN 39567 lvolnelln 39568 lvolnelpln 39569 lplncvrlvol 39595 4atexlemntlpq 40047 cdleme0nex 40269 nlimsuc 43414 |
| Copyright terms: Public domain | W3C validator |