MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt2d Structured version   Visualization version   GIF version

Theorem mt2d 136
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.)
Hypotheses
Ref Expression
mt2d.1 (𝜑𝜒)
mt2d.2 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
mt2d (𝜑 → ¬ 𝜓)

Proof of Theorem mt2d
StepHypRef Expression
1 mt2d.1 . 2 (𝜑𝜒)
2 mt2d.2 . . 3 (𝜑 → (𝜓 → ¬ 𝜒))
32con2d 134 . 2 (𝜑 → (𝜒 → ¬ 𝜓))
41, 3mpd 15 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt2i  137  nsyl3  138  tz7.44-3  8448  sdomdomtr  9150  domsdomtr  9152  infdif  10248  ackbij1b  10278  isf32lem5  10397  alephreg  10622  cfpwsdom  10624  inar1  10815  tskcard  10821  npomex  11036  recnz  12693  rpnnen1lem5  13023  fznuz  13649  uznfz  13650  seqcoll2  14504  ramub1lem1  17064  pgpfac1lem1  20094  lsppratlem6  21154  nconnsubb  23431  iunconnlem  23435  clsconn  23438  xkohaus  23661  reconnlem1  24848  ivthlem2  25487  perfectlem1  27273  lgseisenlem1  27419  ex-natded5.8-2  30433  oddpwdc  34356  erdszelem9  35204  relowlpssretop  37365  sucneqond  37366  heiborlem8  37825  lcvntr  39027  ncvr1  39273  llnneat  39516  2atnelpln  39546  lplnneat  39547  lplnnelln  39548  3atnelvolN  39588  lvolneatN  39590  lvolnelln  39591  lvolnelpln  39592  lplncvrlvol  39618  4atexlemntlpq  40070  cdleme0nex  40292  nlimsuc  43454
  Copyright terms: Public domain W3C validator