![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8447 sdomdomtr 9149 domsdomtr 9151 infdif 10246 ackbij1b 10276 isf32lem5 10395 alephreg 10620 cfpwsdom 10622 inar1 10813 tskcard 10819 npomex 11034 recnz 12691 rpnnen1lem5 13021 fznuz 13646 uznfz 13647 seqcoll2 14501 ramub1lem1 17060 pgpfac1lem1 20109 lsppratlem6 21172 nconnsubb 23447 iunconnlem 23451 clsconn 23454 xkohaus 23677 reconnlem1 24862 ivthlem2 25501 perfectlem1 27288 lgseisenlem1 27434 ex-natded5.8-2 30443 oddpwdc 34336 erdszelem9 35184 relowlpssretop 37347 sucneqond 37348 heiborlem8 37805 lcvntr 39008 ncvr1 39254 llnneat 39497 2atnelpln 39527 lplnneat 39528 lplnnelln 39529 3atnelvolN 39569 lvolneatN 39571 lvolnelln 39572 lvolnelpln 39573 lplncvrlvol 39599 4atexlemntlpq 40051 cdleme0nex 40273 nlimsuc 43431 |
Copyright terms: Public domain | W3C validator |