| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8422 sdomdomtr 9124 domsdomtr 9126 infdif 10222 ackbij1b 10252 isf32lem5 10371 alephreg 10596 cfpwsdom 10598 inar1 10789 tskcard 10795 npomex 11010 recnz 12668 rpnnen1lem5 12997 fznuz 13626 uznfz 13627 seqcoll2 14483 ramub1lem1 17046 pgpfac1lem1 20057 lsppratlem6 21113 nconnsubb 23361 iunconnlem 23365 clsconn 23368 xkohaus 23591 reconnlem1 24766 ivthlem2 25405 perfectlem1 27192 lgseisenlem1 27338 ex-natded5.8-2 30395 oddpwdc 34386 erdszelem9 35221 relowlpssretop 37382 sucneqond 37383 heiborlem8 37842 lcvntr 39044 ncvr1 39290 llnneat 39533 2atnelpln 39563 lplnneat 39564 lplnnelln 39565 3atnelvolN 39605 lvolneatN 39607 lvolnelln 39608 lvolnelpln 39609 lplncvrlvol 39635 4atexlemntlpq 40087 cdleme0nex 40309 nlimsuc 43465 |
| Copyright terms: Public domain | W3C validator |