| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| mt2d.1 | ⊢ (𝜑 → 𝜒) |
| mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| mt2d | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8327 sdomdomtr 9023 domsdomtr 9025 infdif 10096 ackbij1b 10126 isf32lem5 10245 alephreg 10470 cfpwsdom 10472 inar1 10663 tskcard 10669 npomex 10884 recnz 12545 rpnnen1lem5 12876 fznuz 13506 uznfz 13507 seqcoll2 14369 ramub1lem1 16935 chnccat 18529 pgpfac1lem1 19986 lsppratlem6 21087 nconnsubb 23336 iunconnlem 23340 clsconn 23343 xkohaus 23566 reconnlem1 24740 ivthlem2 25378 perfectlem1 27165 lgseisenlem1 27311 ex-natded5.8-2 30389 oddpwdc 34362 erdszelem9 35231 relowlpssretop 37397 sucneqond 37398 heiborlem8 37857 lcvntr 39064 ncvr1 39310 llnneat 39552 2atnelpln 39582 lplnneat 39583 lplnnelln 39584 3atnelvolN 39624 lvolneatN 39626 lvolnelln 39627 lvolnelpln 39628 lplncvrlvol 39654 4atexlemntlpq 40106 cdleme0nex 40328 nlimsuc 43473 |
| Copyright terms: Public domain | W3C validator |