Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 136 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 139 nsyl3 140 tz7.44-3 8073 sdomdomtr 8700 domsdomtr 8702 infdif 9709 ackbij1b 9739 isf32lem5 9857 alephreg 10082 cfpwsdom 10084 inar1 10275 tskcard 10281 npomex 10496 recnz 12138 rpnnen1lem5 12463 fznuz 13080 uznfz 13081 seqcoll2 13917 ramub1lem1 16462 pgpfac1lem1 19315 lsppratlem6 20043 nconnsubb 22174 iunconnlem 22178 clsconn 22181 xkohaus 22404 reconnlem1 23578 ivthlem2 24204 perfectlem1 25965 lgseisenlem1 26111 ex-natded5.8-2 28351 oddpwdc 31891 erdszelem9 32732 relowlpssretop 35158 sucneqond 35159 heiborlem8 35599 lcvntr 36663 ncvr1 36909 llnneat 37151 2atnelpln 37181 lplnneat 37182 lplnnelln 37183 3atnelvolN 37223 lvolneatN 37225 lvolnelln 37226 lvolnelpln 37227 lplncvrlvol 37253 4atexlemntlpq 37705 cdleme0nex 37927 |
Copyright terms: Public domain | W3C validator |