MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigthlem Structured version   Visualization version   GIF version

Theorem konigthlem 10497
Description: Lemma for konigth 10498. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
konigth.4 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
konigth.5 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
Assertion
Ref Expression
konigthlem (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable groups:   𝐴,𝑎,𝑒,𝑓,𝑖   𝐷,𝑎,𝑒   𝐸,𝑎,𝑖   𝑀,𝑎,𝑓   𝑁,𝑎,𝑒,𝑓   𝑃,𝑎,𝑒,𝑓   𝑆,𝑎,𝑒,𝑓
Allowed substitution hints:   𝐷(𝑓,𝑖)   𝑃(𝑖)   𝑆(𝑖)   𝐸(𝑒,𝑓)   𝑀(𝑒,𝑖)   𝑁(𝑖)

Proof of Theorem konigthlem
StepHypRef Expression
1 fvex 6853 . . . . . . . . 9 (𝑀𝑖) ∈ V
2 fvex 6853 . . . . . . . . . . 11 ((𝑓𝑎)‘𝑖) ∈ V
3 eqid 2729 . . . . . . . . . . 11 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
42, 3fnmpti 6643 . . . . . . . . . 10 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)
51mptex 7179 . . . . . . . . . . . 12 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V
6 konigth.4 . . . . . . . . . . . . 13 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
76fvmpt2 6961 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V) → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
85, 7mpan2 691 . . . . . . . . . . 11 (𝑖𝐴 → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
98fneq1d 6593 . . . . . . . . . 10 (𝑖𝐴 → ((𝐷𝑖) Fn (𝑀𝑖) ↔ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)))
104, 9mpbiri 258 . . . . . . . . 9 (𝑖𝐴 → (𝐷𝑖) Fn (𝑀𝑖))
11 fnrndomg 10465 . . . . . . . . 9 ((𝑀𝑖) ∈ V → ((𝐷𝑖) Fn (𝑀𝑖) → ran (𝐷𝑖) ≼ (𝑀𝑖)))
121, 10, 11mpsyl 68 . . . . . . . 8 (𝑖𝐴 → ran (𝐷𝑖) ≼ (𝑀𝑖))
13 domsdomtr 9053 . . . . . . . 8 ((ran (𝐷𝑖) ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
1412, 13sylan 580 . . . . . . 7 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
15 sdomdif 9066 . . . . . . 7 (ran (𝐷𝑖) ≺ (𝑁𝑖) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1614, 15syl 17 . . . . . 6 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1716ralimiaa 3065 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
18 konigth.1 . . . . . 6 𝐴 ∈ V
19 fvex 6853 . . . . . . 7 (𝑁𝑖) ∈ V
2019difexi 5280 . . . . . 6 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∈ V
2118, 20ac6c5 10411 . . . . 5 (∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅ → ∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
22 equid 2012 . . . . . . 7 𝑓 = 𝑓
23 eldifi 4090 . . . . . . . . . . . . 13 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑒𝑖) ∈ (𝑁𝑖))
24 fvex 6853 . . . . . . . . . . . . . . 15 (𝑒𝑖) ∈ V
25 konigth.5 . . . . . . . . . . . . . . . 16 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
2625fvmpt2 6961 . . . . . . . . . . . . . . 15 ((𝑖𝐴 ∧ (𝑒𝑖) ∈ V) → (𝐸𝑖) = (𝑒𝑖))
2724, 26mpan2 691 . . . . . . . . . . . . . 14 (𝑖𝐴 → (𝐸𝑖) = (𝑒𝑖))
2827eleq1d 2813 . . . . . . . . . . . . 13 (𝑖𝐴 → ((𝐸𝑖) ∈ (𝑁𝑖) ↔ (𝑒𝑖) ∈ (𝑁𝑖)))
2923, 28imbitrrid 246 . . . . . . . . . . . 12 (𝑖𝐴 → ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑖) ∈ (𝑁𝑖)))
3029ralimia 3063 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖))
3124, 25fnmpti 6643 . . . . . . . . . . 11 𝐸 Fn 𝐴
3230, 31jctil 519 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3318mptex 7179 . . . . . . . . . . . 12 (𝑖𝐴 ↦ (𝑒𝑖)) ∈ V
3425, 33eqeltri 2824 . . . . . . . . . . 11 𝐸 ∈ V
3534elixp 8854 . . . . . . . . . 10 (𝐸X𝑖𝐴 (𝑁𝑖) ↔ (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3632, 35sylibr 234 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸X𝑖𝐴 (𝑁𝑖))
37 konigth.3 . . . . . . . . 9 𝑃 = X𝑖𝐴 (𝑁𝑖)
3836, 37eleqtrrdi 2839 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸𝑃)
39 foelrn 7061 . . . . . . . . . 10 ((𝑓:𝑆onto𝑃𝐸𝑃) → ∃𝑎𝑆 𝐸 = (𝑓𝑎))
4039expcom 413 . . . . . . . . 9 (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ∃𝑎𝑆 𝐸 = (𝑓𝑎)))
41 konigth.2 . . . . . . . . . . . . . . 15 𝑆 = 𝑖𝐴 (𝑀𝑖)
4241eleq2i 2820 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 𝑖𝐴 (𝑀𝑖))
43 eliun 4955 . . . . . . . . . . . . . 14 (𝑎 𝑖𝐴 (𝑀𝑖) ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
4442, 43bitri 275 . . . . . . . . . . . . 13 (𝑎𝑆 ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
45 nfra1 3259 . . . . . . . . . . . . . . 15 𝑖𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))
46 nfv 1914 . . . . . . . . . . . . . . 15 𝑖 𝐸 = (𝑓𝑎)
4745, 46nfan 1899 . . . . . . . . . . . . . 14 𝑖(∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎))
48 nfv 1914 . . . . . . . . . . . . . 14 𝑖 ¬ 𝑓 = 𝑓
4927ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = (𝑒𝑖))
50 fveq1 6839 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 = (𝑓𝑎) → (𝐸𝑖) = ((𝑓𝑎)‘𝑖))
518fveq1d 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐴 → ((𝐷𝑖)‘𝑎) = ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎))
523fvmpt2 6961 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝑀𝑖) ∧ ((𝑓𝑎)‘𝑖) ∈ V) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
532, 52mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (𝑀𝑖) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
5451, 53sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) = ((𝑓𝑎)‘𝑖))
5554eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝑓𝑎)‘𝑖) = ((𝐷𝑖)‘𝑎))
5650, 55sylan9eq 2784 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = ((𝐷𝑖)‘𝑎))
5749, 56eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) = ((𝐷𝑖)‘𝑎))
58 fnfvelrn 7034 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑖) Fn (𝑀𝑖) ∧ 𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
5910, 58sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6059adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6157, 60eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
62613adant1 1130 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
63 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
64 simp3l 1202 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → 𝑖𝐴)
65 rsp 3223 . . . . . . . . . . . . . . . . . . 19 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))))
66 eldifn 4091 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6765, 66syl6 35 . . . . . . . . . . . . . . . . . 18 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖)))
6863, 64, 67sylc 65 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6962, 68pm2.21dd 195 . . . . . . . . . . . . . . . 16 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ 𝑓 = 𝑓)
70693expia 1121 . . . . . . . . . . . . . . 15 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ¬ 𝑓 = 𝑓))
7170expd 415 . . . . . . . . . . . . . 14 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑖𝐴 → (𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓)))
7247, 48, 71rexlimd 3242 . . . . . . . . . . . . 13 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (∃𝑖𝐴 𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓))
7344, 72biimtrid 242 . . . . . . . . . . . 12 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑎𝑆 → ¬ 𝑓 = 𝑓))
7473ex 412 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 = (𝑓𝑎) → (𝑎𝑆 → ¬ 𝑓 = 𝑓)))
7574com23 86 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑎𝑆 → (𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓)))
7675rexlimdv 3132 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (∃𝑎𝑆 𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓))
7740, 76syl9r 78 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓)))
7838, 77mpd 15 . . . . . . 7 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓))
7922, 78mt2i 137 . . . . . 6 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8079exlimiv 1930 . . . . 5 (∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8117, 21, 803syl 18 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ 𝑓:𝑆onto𝑃)
8281nexdv 1936 . . 3 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ∃𝑓 𝑓:𝑆onto𝑃)
8310dom 9048 . . . . . . . 8 ∅ ≼ (𝑀𝑖)
84 domsdomtr 9053 . . . . . . . 8 ((∅ ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ∅ ≺ (𝑁𝑖))
8583, 84mpan 690 . . . . . . 7 ((𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ (𝑁𝑖))
86190sdom 9049 . . . . . . 7 (∅ ≺ (𝑁𝑖) ↔ (𝑁𝑖) ≠ ∅)
8785, 86sylib 218 . . . . . 6 ((𝑀𝑖) ≺ (𝑁𝑖) → (𝑁𝑖) ≠ ∅)
8887ralimi 3066 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
8937neeq1i 2989 . . . . . 6 (𝑃 ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9019rgenw 3048 . . . . . . . . 9 𝑖𝐴 (𝑁𝑖) ∈ V
91 ixpexg 8872 . . . . . . . . 9 (∀𝑖𝐴 (𝑁𝑖) ∈ V → X𝑖𝐴 (𝑁𝑖) ∈ V)
9290, 91ax-mp 5 . . . . . . . 8 X𝑖𝐴 (𝑁𝑖) ∈ V
9337, 92eqeltri 2824 . . . . . . 7 𝑃 ∈ V
94930sdom 9049 . . . . . 6 (∅ ≺ 𝑃𝑃 ≠ ∅)
9518, 19ac9 10412 . . . . . 6 (∀𝑖𝐴 (𝑁𝑖) ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9689, 94, 953bitr4i 303 . . . . 5 (∅ ≺ 𝑃 ↔ ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
9788, 96sylibr 234 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ 𝑃)
9818, 1iunex 7926 . . . . . . 7 𝑖𝐴 (𝑀𝑖) ∈ V
9941, 98eqeltri 2824 . . . . . 6 𝑆 ∈ V
100 domtri 10485 . . . . . 6 ((𝑃 ∈ V ∧ 𝑆 ∈ V) → (𝑃𝑆 ↔ ¬ 𝑆𝑃))
10193, 99, 100mp2an 692 . . . . 5 (𝑃𝑆 ↔ ¬ 𝑆𝑃)
102101biimpri 228 . . . 4 𝑆𝑃𝑃𝑆)
103 fodomr 9069 . . . 4 ((∅ ≺ 𝑃𝑃𝑆) → ∃𝑓 𝑓:𝑆onto𝑃)
10497, 102, 103syl2an 596 . . 3 ((∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) ∧ ¬ 𝑆𝑃) → ∃𝑓 𝑓:𝑆onto𝑃)
10582, 104mtand 815 . 2 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ¬ 𝑆𝑃)
106105notnotrd 133 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  c0 4292   ciun 4951   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  ontowfo 6497  cfv 6499  Xcixp 8847  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-acn 9871  df-ac 10045
This theorem is referenced by:  konigth  10498
  Copyright terms: Public domain W3C validator