MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigthlem Structured version   Visualization version   GIF version

Theorem konigthlem 9643
Description: Lemma for konigth 9644. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
konigth.4 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
konigth.5 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
Assertion
Ref Expression
konigthlem (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable groups:   𝐴,𝑎,𝑒,𝑓,𝑖   𝐷,𝑎,𝑒   𝐸,𝑎,𝑖   𝑀,𝑎,𝑓   𝑁,𝑎,𝑒,𝑓   𝑃,𝑎,𝑒,𝑓   𝑆,𝑎,𝑒,𝑓
Allowed substitution hints:   𝐷(𝑓,𝑖)   𝑃(𝑖)   𝑆(𝑖)   𝐸(𝑒,𝑓)   𝑀(𝑒,𝑖)   𝑁(𝑖)

Proof of Theorem konigthlem
StepHypRef Expression
1 fvex 6388 . . . . . . . . 9 (𝑀𝑖) ∈ V
2 fvex 6388 . . . . . . . . . . 11 ((𝑓𝑎)‘𝑖) ∈ V
3 eqid 2765 . . . . . . . . . . 11 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
42, 3fnmpti 6200 . . . . . . . . . 10 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)
51mptex 6679 . . . . . . . . . . . 12 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V
6 konigth.4 . . . . . . . . . . . . 13 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
76fvmpt2 6480 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V) → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
85, 7mpan2 682 . . . . . . . . . . 11 (𝑖𝐴 → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
98fneq1d 6159 . . . . . . . . . 10 (𝑖𝐴 → ((𝐷𝑖) Fn (𝑀𝑖) ↔ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)))
104, 9mpbiri 249 . . . . . . . . 9 (𝑖𝐴 → (𝐷𝑖) Fn (𝑀𝑖))
11 fnrndomg 9611 . . . . . . . . 9 ((𝑀𝑖) ∈ V → ((𝐷𝑖) Fn (𝑀𝑖) → ran (𝐷𝑖) ≼ (𝑀𝑖)))
121, 10, 11mpsyl 68 . . . . . . . 8 (𝑖𝐴 → ran (𝐷𝑖) ≼ (𝑀𝑖))
13 domsdomtr 8302 . . . . . . . 8 ((ran (𝐷𝑖) ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
1412, 13sylan 575 . . . . . . 7 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
15 sdomdif 8315 . . . . . . 7 (ran (𝐷𝑖) ≺ (𝑁𝑖) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1614, 15syl 17 . . . . . 6 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1716ralimiaa 3098 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
18 konigth.1 . . . . . 6 𝐴 ∈ V
19 fvex 6388 . . . . . . 7 (𝑁𝑖) ∈ V
20 difss 3899 . . . . . . 7 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ⊆ (𝑁𝑖)
2119, 20ssexi 4964 . . . . . 6 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∈ V
2218, 21ac6c5 9557 . . . . 5 (∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅ → ∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
23 equid 2109 . . . . . . 7 𝑓 = 𝑓
24 eldifi 3894 . . . . . . . . . . . . 13 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑒𝑖) ∈ (𝑁𝑖))
25 fvex 6388 . . . . . . . . . . . . . . 15 (𝑒𝑖) ∈ V
26 konigth.5 . . . . . . . . . . . . . . . 16 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
2726fvmpt2 6480 . . . . . . . . . . . . . . 15 ((𝑖𝐴 ∧ (𝑒𝑖) ∈ V) → (𝐸𝑖) = (𝑒𝑖))
2825, 27mpan2 682 . . . . . . . . . . . . . 14 (𝑖𝐴 → (𝐸𝑖) = (𝑒𝑖))
2928eleq1d 2829 . . . . . . . . . . . . 13 (𝑖𝐴 → ((𝐸𝑖) ∈ (𝑁𝑖) ↔ (𝑒𝑖) ∈ (𝑁𝑖)))
3024, 29syl5ibr 237 . . . . . . . . . . . 12 (𝑖𝐴 → ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑖) ∈ (𝑁𝑖)))
3130ralimia 3097 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖))
3225, 26fnmpti 6200 . . . . . . . . . . 11 𝐸 Fn 𝐴
3331, 32jctil 515 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3418mptex 6679 . . . . . . . . . . . 12 (𝑖𝐴 ↦ (𝑒𝑖)) ∈ V
3526, 34eqeltri 2840 . . . . . . . . . . 11 𝐸 ∈ V
3635elixp 8120 . . . . . . . . . 10 (𝐸X𝑖𝐴 (𝑁𝑖) ↔ (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3733, 36sylibr 225 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸X𝑖𝐴 (𝑁𝑖))
38 konigth.3 . . . . . . . . 9 𝑃 = X𝑖𝐴 (𝑁𝑖)
3937, 38syl6eleqr 2855 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸𝑃)
40 foelrn 6568 . . . . . . . . . 10 ((𝑓:𝑆onto𝑃𝐸𝑃) → ∃𝑎𝑆 𝐸 = (𝑓𝑎))
4140expcom 402 . . . . . . . . 9 (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ∃𝑎𝑆 𝐸 = (𝑓𝑎)))
42 konigth.2 . . . . . . . . . . . . . . 15 𝑆 = 𝑖𝐴 (𝑀𝑖)
4342eleq2i 2836 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 𝑖𝐴 (𝑀𝑖))
44 eliun 4680 . . . . . . . . . . . . . 14 (𝑎 𝑖𝐴 (𝑀𝑖) ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
4543, 44bitri 266 . . . . . . . . . . . . 13 (𝑎𝑆 ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
46 nfra1 3088 . . . . . . . . . . . . . . 15 𝑖𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))
47 nfv 2009 . . . . . . . . . . . . . . 15 𝑖 𝐸 = (𝑓𝑎)
4846, 47nfan 1998 . . . . . . . . . . . . . 14 𝑖(∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎))
49 nfv 2009 . . . . . . . . . . . . . 14 𝑖 ¬ 𝑓 = 𝑓
5028ad2antrl 719 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = (𝑒𝑖))
51 fveq1 6374 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 = (𝑓𝑎) → (𝐸𝑖) = ((𝑓𝑎)‘𝑖))
528fveq1d 6377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐴 → ((𝐷𝑖)‘𝑎) = ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎))
533fvmpt2 6480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝑀𝑖) ∧ ((𝑓𝑎)‘𝑖) ∈ V) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
542, 53mpan2 682 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (𝑀𝑖) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
5552, 54sylan9eq 2819 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) = ((𝑓𝑎)‘𝑖))
5655eqcomd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝑓𝑎)‘𝑖) = ((𝐷𝑖)‘𝑎))
5751, 56sylan9eq 2819 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = ((𝐷𝑖)‘𝑎))
5850, 57eqtr3d 2801 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) = ((𝐷𝑖)‘𝑎))
59 fnfvelrn 6546 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑖) Fn (𝑀𝑖) ∧ 𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6010, 59sylan 575 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6160adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6258, 61eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
63623adant1 1160 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
64 simp1 1166 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
65 simp3l 1258 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → 𝑖𝐴)
66 rsp 3076 . . . . . . . . . . . . . . . . . . 19 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))))
67 eldifn 3895 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6866, 67syl6 35 . . . . . . . . . . . . . . . . . 18 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖)))
6964, 65, 68sylc 65 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
7063, 69pm2.21dd 186 . . . . . . . . . . . . . . . 16 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ 𝑓 = 𝑓)
71703expia 1150 . . . . . . . . . . . . . . 15 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ¬ 𝑓 = 𝑓))
7271expd 404 . . . . . . . . . . . . . 14 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑖𝐴 → (𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓)))
7348, 49, 72rexlimd 3173 . . . . . . . . . . . . 13 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (∃𝑖𝐴 𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓))
7445, 73syl5bi 233 . . . . . . . . . . . 12 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑎𝑆 → ¬ 𝑓 = 𝑓))
7574ex 401 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 = (𝑓𝑎) → (𝑎𝑆 → ¬ 𝑓 = 𝑓)))
7675com23 86 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑎𝑆 → (𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓)))
7776rexlimdv 3177 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (∃𝑎𝑆 𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓))
7841, 77syl9r 78 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓)))
7939, 78mpd 15 . . . . . . 7 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓))
8023, 79mt2i 134 . . . . . 6 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8180exlimiv 2025 . . . . 5 (∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8217, 22, 813syl 18 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ 𝑓:𝑆onto𝑃)
8382nexdv 2031 . . 3 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ∃𝑓 𝑓:𝑆onto𝑃)
8410dom 8297 . . . . . . . 8 ∅ ≼ (𝑀𝑖)
85 domsdomtr 8302 . . . . . . . 8 ((∅ ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ∅ ≺ (𝑁𝑖))
8684, 85mpan 681 . . . . . . 7 ((𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ (𝑁𝑖))
87190sdom 8298 . . . . . . 7 (∅ ≺ (𝑁𝑖) ↔ (𝑁𝑖) ≠ ∅)
8886, 87sylib 209 . . . . . 6 ((𝑀𝑖) ≺ (𝑁𝑖) → (𝑁𝑖) ≠ ∅)
8988ralimi 3099 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
9038neeq1i 3001 . . . . . 6 (𝑃 ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9119rgenw 3071 . . . . . . . . 9 𝑖𝐴 (𝑁𝑖) ∈ V
92 ixpexg 8137 . . . . . . . . 9 (∀𝑖𝐴 (𝑁𝑖) ∈ V → X𝑖𝐴 (𝑁𝑖) ∈ V)
9391, 92ax-mp 5 . . . . . . . 8 X𝑖𝐴 (𝑁𝑖) ∈ V
9438, 93eqeltri 2840 . . . . . . 7 𝑃 ∈ V
95940sdom 8298 . . . . . 6 (∅ ≺ 𝑃𝑃 ≠ ∅)
9618, 19ac9 9558 . . . . . 6 (∀𝑖𝐴 (𝑁𝑖) ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9790, 95, 963bitr4i 294 . . . . 5 (∅ ≺ 𝑃 ↔ ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
9889, 97sylibr 225 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ 𝑃)
9918, 1iunex 7345 . . . . . . 7 𝑖𝐴 (𝑀𝑖) ∈ V
10042, 99eqeltri 2840 . . . . . 6 𝑆 ∈ V
101 domtri 9631 . . . . . 6 ((𝑃 ∈ V ∧ 𝑆 ∈ V) → (𝑃𝑆 ↔ ¬ 𝑆𝑃))
10294, 100, 101mp2an 683 . . . . 5 (𝑃𝑆 ↔ ¬ 𝑆𝑃)
103102biimpri 219 . . . 4 𝑆𝑃𝑃𝑆)
104 fodomr 8318 . . . 4 ((∅ ≺ 𝑃𝑃𝑆) → ∃𝑓 𝑓:𝑆onto𝑃)
10598, 103, 104syl2an 589 . . 3 ((∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) ∧ ¬ 𝑆𝑃) → ∃𝑓 𝑓:𝑆onto𝑃)
10683, 105mtand 850 . 2 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ¬ 𝑆𝑃)
107106notnotrd 130 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cdif 3729  c0 4079   ciun 4676   class class class wbr 4809  cmpt 4888  ran crn 5278   Fn wfn 6063  ontowfo 6066  cfv 6068  Xcixp 8113  cdom 8158  csdm 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-ac2 9538
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-card 9016  df-acn 9019  df-ac 9190
This theorem is referenced by:  konigth  9644
  Copyright terms: Public domain W3C validator