MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigthlem Structured version   Visualization version   GIF version

Theorem konigthlem 10459
Description: Lemma for konigth 10460. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
konigth.4 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
konigth.5 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
Assertion
Ref Expression
konigthlem (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable groups:   𝐴,𝑎,𝑒,𝑓,𝑖   𝐷,𝑎,𝑒   𝐸,𝑎,𝑖   𝑀,𝑎,𝑓   𝑁,𝑎,𝑒,𝑓   𝑃,𝑎,𝑒,𝑓   𝑆,𝑎,𝑒,𝑓
Allowed substitution hints:   𝐷(𝑓,𝑖)   𝑃(𝑖)   𝑆(𝑖)   𝐸(𝑒,𝑓)   𝑀(𝑒,𝑖)   𝑁(𝑖)

Proof of Theorem konigthlem
StepHypRef Expression
1 fvex 6835 . . . . . . . . 9 (𝑀𝑖) ∈ V
2 fvex 6835 . . . . . . . . . . 11 ((𝑓𝑎)‘𝑖) ∈ V
3 eqid 2731 . . . . . . . . . . 11 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
42, 3fnmpti 6624 . . . . . . . . . 10 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)
51mptex 7157 . . . . . . . . . . . 12 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V
6 konigth.4 . . . . . . . . . . . . 13 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
76fvmpt2 6940 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V) → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
85, 7mpan2 691 . . . . . . . . . . 11 (𝑖𝐴 → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
98fneq1d 6574 . . . . . . . . . 10 (𝑖𝐴 → ((𝐷𝑖) Fn (𝑀𝑖) ↔ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)))
104, 9mpbiri 258 . . . . . . . . 9 (𝑖𝐴 → (𝐷𝑖) Fn (𝑀𝑖))
11 fnrndomg 10427 . . . . . . . . 9 ((𝑀𝑖) ∈ V → ((𝐷𝑖) Fn (𝑀𝑖) → ran (𝐷𝑖) ≼ (𝑀𝑖)))
121, 10, 11mpsyl 68 . . . . . . . 8 (𝑖𝐴 → ran (𝐷𝑖) ≼ (𝑀𝑖))
13 domsdomtr 9025 . . . . . . . 8 ((ran (𝐷𝑖) ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
1412, 13sylan 580 . . . . . . 7 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
15 sdomdif 9038 . . . . . . 7 (ran (𝐷𝑖) ≺ (𝑁𝑖) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1614, 15syl 17 . . . . . 6 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1716ralimiaa 3068 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
18 konigth.1 . . . . . 6 𝐴 ∈ V
19 fvex 6835 . . . . . . 7 (𝑁𝑖) ∈ V
2019difexi 5268 . . . . . 6 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∈ V
2118, 20ac6c5 10373 . . . . 5 (∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅ → ∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
22 equid 2013 . . . . . . 7 𝑓 = 𝑓
23 eldifi 4081 . . . . . . . . . . . . 13 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑒𝑖) ∈ (𝑁𝑖))
24 fvex 6835 . . . . . . . . . . . . . . 15 (𝑒𝑖) ∈ V
25 konigth.5 . . . . . . . . . . . . . . . 16 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
2625fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑖𝐴 ∧ (𝑒𝑖) ∈ V) → (𝐸𝑖) = (𝑒𝑖))
2724, 26mpan2 691 . . . . . . . . . . . . . 14 (𝑖𝐴 → (𝐸𝑖) = (𝑒𝑖))
2827eleq1d 2816 . . . . . . . . . . . . 13 (𝑖𝐴 → ((𝐸𝑖) ∈ (𝑁𝑖) ↔ (𝑒𝑖) ∈ (𝑁𝑖)))
2923, 28imbitrrid 246 . . . . . . . . . . . 12 (𝑖𝐴 → ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑖) ∈ (𝑁𝑖)))
3029ralimia 3066 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖))
3124, 25fnmpti 6624 . . . . . . . . . . 11 𝐸 Fn 𝐴
3230, 31jctil 519 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3318mptex 7157 . . . . . . . . . . . 12 (𝑖𝐴 ↦ (𝑒𝑖)) ∈ V
3425, 33eqeltri 2827 . . . . . . . . . . 11 𝐸 ∈ V
3534elixp 8828 . . . . . . . . . 10 (𝐸X𝑖𝐴 (𝑁𝑖) ↔ (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3632, 35sylibr 234 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸X𝑖𝐴 (𝑁𝑖))
37 konigth.3 . . . . . . . . 9 𝑃 = X𝑖𝐴 (𝑁𝑖)
3836, 37eleqtrrdi 2842 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸𝑃)
39 foelrn 7040 . . . . . . . . . 10 ((𝑓:𝑆onto𝑃𝐸𝑃) → ∃𝑎𝑆 𝐸 = (𝑓𝑎))
4039expcom 413 . . . . . . . . 9 (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ∃𝑎𝑆 𝐸 = (𝑓𝑎)))
41 konigth.2 . . . . . . . . . . . . . . 15 𝑆 = 𝑖𝐴 (𝑀𝑖)
4241eleq2i 2823 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 𝑖𝐴 (𝑀𝑖))
43 eliun 4945 . . . . . . . . . . . . . 14 (𝑎 𝑖𝐴 (𝑀𝑖) ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
4442, 43bitri 275 . . . . . . . . . . . . 13 (𝑎𝑆 ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
45 nfra1 3256 . . . . . . . . . . . . . . 15 𝑖𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))
46 nfv 1915 . . . . . . . . . . . . . . 15 𝑖 𝐸 = (𝑓𝑎)
4745, 46nfan 1900 . . . . . . . . . . . . . 14 𝑖(∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎))
48 nfv 1915 . . . . . . . . . . . . . 14 𝑖 ¬ 𝑓 = 𝑓
4927ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = (𝑒𝑖))
50 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 = (𝑓𝑎) → (𝐸𝑖) = ((𝑓𝑎)‘𝑖))
518fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐴 → ((𝐷𝑖)‘𝑎) = ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎))
523fvmpt2 6940 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝑀𝑖) ∧ ((𝑓𝑎)‘𝑖) ∈ V) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
532, 52mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (𝑀𝑖) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
5451, 53sylan9eq 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) = ((𝑓𝑎)‘𝑖))
5554eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝑓𝑎)‘𝑖) = ((𝐷𝑖)‘𝑎))
5650, 55sylan9eq 2786 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = ((𝐷𝑖)‘𝑎))
5749, 56eqtr3d 2768 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) = ((𝐷𝑖)‘𝑎))
58 fnfvelrn 7013 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑖) Fn (𝑀𝑖) ∧ 𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
5910, 58sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6059adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6157, 60eqeltrd 2831 . . . . . . . . . . . . . . . . . 18 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
62613adant1 1130 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
63 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
64 simp3l 1202 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → 𝑖𝐴)
65 rsp 3220 . . . . . . . . . . . . . . . . . . 19 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))))
66 eldifn 4082 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6765, 66syl6 35 . . . . . . . . . . . . . . . . . 18 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖)))
6863, 64, 67sylc 65 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6962, 68pm2.21dd 195 . . . . . . . . . . . . . . . 16 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ 𝑓 = 𝑓)
70693expia 1121 . . . . . . . . . . . . . . 15 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ¬ 𝑓 = 𝑓))
7170expd 415 . . . . . . . . . . . . . 14 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑖𝐴 → (𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓)))
7247, 48, 71rexlimd 3239 . . . . . . . . . . . . 13 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (∃𝑖𝐴 𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓))
7344, 72biimtrid 242 . . . . . . . . . . . 12 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑎𝑆 → ¬ 𝑓 = 𝑓))
7473ex 412 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 = (𝑓𝑎) → (𝑎𝑆 → ¬ 𝑓 = 𝑓)))
7574com23 86 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑎𝑆 → (𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓)))
7675rexlimdv 3131 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (∃𝑎𝑆 𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓))
7740, 76syl9r 78 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓)))
7838, 77mpd 15 . . . . . . 7 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓))
7922, 78mt2i 137 . . . . . 6 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8079exlimiv 1931 . . . . 5 (∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8117, 21, 803syl 18 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ 𝑓:𝑆onto𝑃)
8281nexdv 1937 . . 3 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ∃𝑓 𝑓:𝑆onto𝑃)
8310dom 9020 . . . . . . . 8 ∅ ≼ (𝑀𝑖)
84 domsdomtr 9025 . . . . . . . 8 ((∅ ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ∅ ≺ (𝑁𝑖))
8583, 84mpan 690 . . . . . . 7 ((𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ (𝑁𝑖))
86190sdom 9021 . . . . . . 7 (∅ ≺ (𝑁𝑖) ↔ (𝑁𝑖) ≠ ∅)
8785, 86sylib 218 . . . . . 6 ((𝑀𝑖) ≺ (𝑁𝑖) → (𝑁𝑖) ≠ ∅)
8887ralimi 3069 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
8937neeq1i 2992 . . . . . 6 (𝑃 ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9019rgenw 3051 . . . . . . . . 9 𝑖𝐴 (𝑁𝑖) ∈ V
91 ixpexg 8846 . . . . . . . . 9 (∀𝑖𝐴 (𝑁𝑖) ∈ V → X𝑖𝐴 (𝑁𝑖) ∈ V)
9290, 91ax-mp 5 . . . . . . . 8 X𝑖𝐴 (𝑁𝑖) ∈ V
9337, 92eqeltri 2827 . . . . . . 7 𝑃 ∈ V
94930sdom 9021 . . . . . 6 (∅ ≺ 𝑃𝑃 ≠ ∅)
9518, 19ac9 10374 . . . . . 6 (∀𝑖𝐴 (𝑁𝑖) ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9689, 94, 953bitr4i 303 . . . . 5 (∅ ≺ 𝑃 ↔ ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
9788, 96sylibr 234 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ 𝑃)
9818, 1iunex 7900 . . . . . . 7 𝑖𝐴 (𝑀𝑖) ∈ V
9941, 98eqeltri 2827 . . . . . 6 𝑆 ∈ V
100 domtri 10447 . . . . . 6 ((𝑃 ∈ V ∧ 𝑆 ∈ V) → (𝑃𝑆 ↔ ¬ 𝑆𝑃))
10193, 99, 100mp2an 692 . . . . 5 (𝑃𝑆 ↔ ¬ 𝑆𝑃)
102101biimpri 228 . . . 4 𝑆𝑃𝑃𝑆)
103 fodomr 9041 . . . 4 ((∅ ≺ 𝑃𝑃𝑆) → ∃𝑓 𝑓:𝑆onto𝑃)
10497, 102, 103syl2an 596 . . 3 ((∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) ∧ ¬ 𝑆𝑃) → ∃𝑓 𝑓:𝑆onto𝑃)
10582, 104mtand 815 . 2 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ¬ 𝑆𝑃)
106105notnotrd 133 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  c0 4283   ciun 4941   class class class wbr 5091  cmpt 5172  ran crn 5617   Fn wfn 6476  ontowfo 6479  cfv 6481  Xcixp 8821  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9832  df-acn 9835  df-ac 10007
This theorem is referenced by:  konigth  10460
  Copyright terms: Public domain W3C validator