![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elirrv | Structured version Visualization version GIF version |
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9674 and efrirr 5680, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnex 5449 | . . 3 ⊢ {𝑥} ∈ V | |
2 | eleq1w 2827 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
3 | vsnid 4685 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
4 | 2, 3 | speivw 1973 | . . 3 ⊢ ∃𝑦 𝑦 ∈ {𝑥} |
5 | zfregcl 9663 | . . 3 ⊢ ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) | |
6 | 1, 4, 5 | mp2 9 | . 2 ⊢ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} |
7 | velsn 4664 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
8 | ax9 2122 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) | |
9 | 8 | equcoms 2019 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑥 → (𝑦 = 𝑥 → 𝑥 ∈ 𝑦)) |
11 | 7, 10 | biimtrid 242 | . . . . . 6 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → 𝑥 ∈ 𝑦)) |
12 | eleq1w 2827 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
13 | 12 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥})) |
14 | 13 | rspccv 3632 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ {𝑥})) |
15 | 3, 14 | mt2i 137 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥 ∈ 𝑦) |
16 | 11, 15 | nsyli 157 | . . . . 5 ⊢ (𝑥 ∈ 𝑥 → (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥})) |
17 | 16 | con2d 134 | . . . 4 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) |
18 | 17 | ralrimiv 3151 | . . 3 ⊢ (𝑥 ∈ 𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
19 | ralnex 3078 | . . 3 ⊢ (∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) | |
20 | 18, 19 | sylib 218 | . 2 ⊢ (𝑥 ∈ 𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
21 | 6, 20 | mt2 200 | 1 ⊢ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: elirr 9666 nd1 10656 nd2 10657 nd3 10658 axunnd 10665 axregndlem1 10671 axregndlem2 10672 axregnd 10673 axnulg 35068 elpotr 35745 exnel 35766 distel 35767 ruvALT 42624 onsupmaxb 43200 ralndv1 47020 |
Copyright terms: Public domain | W3C validator |