| Step | Hyp | Ref
| Expression |
| 1 | | biimpr 220 |
. . . . 5
⊢ ((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → (𝑦 = 𝑥 → 𝑦 ∈ 𝑤)) |
| 2 | 1 | alimi 1811 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → ∀𝑦(𝑦 = 𝑥 → 𝑦 ∈ 𝑤)) |
| 3 | | elequ1 2116 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤)) |
| 4 | 3 | equsalvw 2004 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑥 → 𝑦 ∈ 𝑤) ↔ 𝑥 ∈ 𝑤) |
| 5 | 2, 4 | sylib 218 |
. . 3
⊢
(∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → 𝑥 ∈ 𝑤) |
| 6 | 3 | equsexvw 2005 |
. . . . . . 7
⊢
(∃𝑦(𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤) ↔ 𝑥 ∈ 𝑤) |
| 7 | | exsimpr 1869 |
. . . . . . 7
⊢
(∃𝑦(𝑦 = 𝑥 ∧ 𝑦 ∈ 𝑤) → ∃𝑦 𝑦 ∈ 𝑤) |
| 8 | 6, 7 | sylbir 235 |
. . . . . 6
⊢ (𝑥 ∈ 𝑤 → ∃𝑦 𝑦 ∈ 𝑤) |
| 9 | | ax-reg 9503 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ 𝑤 → ∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤))) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ 𝑤 → ∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤))) |
| 11 | | elequ1 2116 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 12 | | elequ1 2116 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑥 ∈ 𝑤)) |
| 13 | 12 | notbid 318 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (¬ 𝑧 ∈ 𝑤 ↔ ¬ 𝑥 ∈ 𝑤)) |
| 14 | 11, 13 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤) ↔ (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤))) |
| 15 | 14 | spvv 1988 |
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤) → (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤)) |
| 16 | | con2 135 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤) → (𝑥 ∈ 𝑤 → ¬ 𝑥 ∈ 𝑦)) |
| 17 | 16 | com12 32 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑤 → ((𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤) → ¬ 𝑥 ∈ 𝑦)) |
| 18 | 17 | anim2d 612 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑤 → ((𝑦 ∈ 𝑤 ∧ (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑤)) → (𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦))) |
| 19 | 15, 18 | sylan2i 606 |
. . . . . 6
⊢ (𝑥 ∈ 𝑤 → ((𝑦 ∈ 𝑤 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤)) → (𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦))) |
| 20 | 19 | eximdv 1917 |
. . . . 5
⊢ (𝑥 ∈ 𝑤 → (∃𝑦(𝑦 ∈ 𝑤 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑤)) → ∃𝑦(𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦))) |
| 21 | 10, 20 | mpd 15 |
. . . 4
⊢ (𝑥 ∈ 𝑤 → ∃𝑦(𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦)) |
| 22 | | 19.29 1873 |
. . . . 5
⊢
((∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ ∃𝑦(𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦)) → ∃𝑦((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦))) |
| 23 | | biimp 215 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → (𝑦 ∈ 𝑤 → 𝑦 = 𝑥)) |
| 24 | 23 | anim1d 611 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → ((𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦) → (𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦))) |
| 25 | | ax9v2 2122 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) |
| 26 | 25 | equcoms 2020 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) |
| 27 | 26 | con3dimp 408 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝑦) → ¬ 𝑥 ∈ 𝑥) |
| 28 | 24, 27 | syl6 35 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → ((𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦) → ¬ 𝑥 ∈ 𝑥)) |
| 29 | 28 | imp 406 |
. . . . . 6
⊢ (((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦)) → ¬ 𝑥 ∈ 𝑥) |
| 30 | 29 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑦((𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ (𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦)) → ¬ 𝑥 ∈ 𝑥) |
| 31 | 22, 30 | syl 17 |
. . . 4
⊢
((∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ ∃𝑦(𝑦 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑦)) → ¬ 𝑥 ∈ 𝑥) |
| 32 | 21, 31 | sylan2 593 |
. . 3
⊢
((∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) ∧ 𝑥 ∈ 𝑤) → ¬ 𝑥 ∈ 𝑥) |
| 33 | 5, 32 | mpdan 687 |
. 2
⊢
(∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) → ¬ 𝑥 ∈ 𝑥) |
| 34 | | el 5384 |
. . . 4
⊢
∃𝑤 𝑥 ∈ 𝑤 |
| 35 | 4 | biimpri 228 |
. . . 4
⊢ (𝑥 ∈ 𝑤 → ∀𝑦(𝑦 = 𝑥 → 𝑦 ∈ 𝑤)) |
| 36 | 34, 35 | eximii 1837 |
. . 3
⊢
∃𝑤∀𝑦(𝑦 = 𝑥 → 𝑦 ∈ 𝑤) |
| 37 | 36 | sepexi 5243 |
. 2
⊢
∃𝑤∀𝑦(𝑦 ∈ 𝑤 ↔ 𝑦 = 𝑥) |
| 38 | 33, 37 | exlimiiv 1931 |
1
⊢ ¬
𝑥 ∈ 𝑥 |