MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Visualization version   GIF version

Theorem elirrv 9285
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9293 and efrirr 5561, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv ¬ 𝑥𝑥

Proof of Theorem elirrv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . 3 {𝑥} ∈ V
2 eleq1w 2821 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
3 vsnid 4595 . . . 4 𝑥 ∈ {𝑥}
42, 3speivw 1978 . . 3 𝑦 𝑦 ∈ {𝑥}
5 zfregcl 9283 . . 3 ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
61, 4, 5mp2 9 . 2 𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}
7 velsn 4574 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
8 ax9 2122 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
98equcoms 2024 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
109com12 32 . . . . . . 7 (𝑥𝑥 → (𝑦 = 𝑥𝑥𝑦))
117, 10syl5bi 241 . . . . . 6 (𝑥𝑥 → (𝑦 ∈ {𝑥} → 𝑥𝑦))
12 eleq1w 2821 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
1312notbid 317 . . . . . . . 8 (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥}))
1413rspccv 3549 . . . . . . 7 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥𝑦 → ¬ 𝑥 ∈ {𝑥}))
153, 14mt2i 137 . . . . . 6 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥𝑦)
1611, 15nsyli 157 . . . . 5 (𝑥𝑥 → (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥}))
1716con2d 134 . . . 4 (𝑥𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
1817ralrimiv 3106 . . 3 (𝑥𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
19 ralnex 3163 . . 3 (∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
2018, 19sylib 217 . 2 (𝑥𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
216, 20mt2 199 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  elirr  9286  nd1  10274  nd2  10275  nd3  10276  axunnd  10283  axregndlem1  10289  axregndlem2  10290  axregnd  10291  elpotr  33663  exnel  33684  distel  33685  ruvALT  40096  ralndv1  44484
  Copyright terms: Public domain W3C validator