MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Visualization version   GIF version

Theorem elirrv 9490
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. This is trivial to prove from zfregfr 9501 and efrirr 5599 (see elirrvALT 9502), but this proof is direct from ax-reg 9485. (Contributed by NM, 19-Aug-1993.) Reduce axiom dependencies and make use of ax-reg 9485 directly. (Revised by BTernaryTau, 27-Dec-2025.)
Assertion
Ref Expression
elirrv ¬ 𝑥𝑥

Proof of Theorem elirrv
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biimpr 220 . . . . 5 ((𝑦𝑤𝑦 = 𝑥) → (𝑦 = 𝑥𝑦𝑤))
21alimi 1812 . . . 4 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → ∀𝑦(𝑦 = 𝑥𝑦𝑤))
3 elequ1 2120 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑤𝑥𝑤))
43equsalvw 2005 . . . 4 (∀𝑦(𝑦 = 𝑥𝑦𝑤) ↔ 𝑥𝑤)
52, 4sylib 218 . . 3 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → 𝑥𝑤)
63equsexvw 2006 . . . . . . 7 (∃𝑦(𝑦 = 𝑥𝑦𝑤) ↔ 𝑥𝑤)
7 exsimpr 1870 . . . . . . 7 (∃𝑦(𝑦 = 𝑥𝑦𝑤) → ∃𝑦 𝑦𝑤)
86, 7sylbir 235 . . . . . 6 (𝑥𝑤 → ∃𝑦 𝑦𝑤)
9 ax-reg 9485 . . . . . 6 (∃𝑦 𝑦𝑤 → ∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)))
108, 9syl 17 . . . . 5 (𝑥𝑤 → ∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)))
11 elequ1 2120 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
12 elequ1 2120 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1312notbid 318 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 𝑧𝑤 ↔ ¬ 𝑥𝑤))
1411, 13imbi12d 344 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧𝑦 → ¬ 𝑧𝑤) ↔ (𝑥𝑦 → ¬ 𝑥𝑤)))
1514spvv 1989 . . . . . . 7 (∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤) → (𝑥𝑦 → ¬ 𝑥𝑤))
16 con2 135 . . . . . . . . 9 ((𝑥𝑦 → ¬ 𝑥𝑤) → (𝑥𝑤 → ¬ 𝑥𝑦))
1716com12 32 . . . . . . . 8 (𝑥𝑤 → ((𝑥𝑦 → ¬ 𝑥𝑤) → ¬ 𝑥𝑦))
1817anim2d 612 . . . . . . 7 (𝑥𝑤 → ((𝑦𝑤 ∧ (𝑥𝑦 → ¬ 𝑥𝑤)) → (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
1915, 18sylan2i 606 . . . . . 6 (𝑥𝑤 → ((𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)) → (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
2019eximdv 1918 . . . . 5 (𝑥𝑤 → (∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)) → ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)))
2110, 20mpd 15 . . . 4 (𝑥𝑤 → ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦))
22 19.29 1874 . . . . 5 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ∃𝑦((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
23 biimp 215 . . . . . . . . 9 ((𝑦𝑤𝑦 = 𝑥) → (𝑦𝑤𝑦 = 𝑥))
2423anim1d 611 . . . . . . . 8 ((𝑦𝑤𝑦 = 𝑥) → ((𝑦𝑤 ∧ ¬ 𝑥𝑦) → (𝑦 = 𝑥 ∧ ¬ 𝑥𝑦)))
25 ax9v2 2126 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
2625equcoms 2021 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
2726con3dimp 408 . . . . . . . 8 ((𝑦 = 𝑥 ∧ ¬ 𝑥𝑦) → ¬ 𝑥𝑥)
2824, 27syl6 35 . . . . . . 7 ((𝑦𝑤𝑦 = 𝑥) → ((𝑦𝑤 ∧ ¬ 𝑥𝑦) → ¬ 𝑥𝑥))
2928imp 406 . . . . . 6 (((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3029exlimiv 1931 . . . . 5 (∃𝑦((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3122, 30syl 17 . . . 4 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3221, 31sylan2 593 . . 3 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ 𝑥𝑤) → ¬ 𝑥𝑥)
335, 32mpdan 687 . 2 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → ¬ 𝑥𝑥)
34 el 5382 . . . 4 𝑤 𝑥𝑤
354biimpri 228 . . . 4 (𝑥𝑤 → ∀𝑦(𝑦 = 𝑥𝑦𝑤))
3634, 35eximii 1838 . . 3 𝑤𝑦(𝑦 = 𝑥𝑦𝑤)
3736sepexi 5241 . 2 𝑤𝑦(𝑦𝑤𝑦 = 𝑥)
3833, 37exlimiiv 1932 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-sep 5236  ax-pr 5372  ax-reg 9485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781
This theorem is referenced by:  elirr  9492  nd1  10485  nd2  10486  nd3  10487  axunnd  10494  axregndlem1  10500  axregndlem2  10501  axregnd  10502  axnulg  35140  elpotr  35844  exnel  35865  distel  35866  ruvALT  42787  onsupmaxb  43356  ralndv1  47229
  Copyright terms: Public domain W3C validator