MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Visualization version   GIF version

Theorem elirrv 9556
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9565 and efrirr 5621, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv ¬ 𝑥𝑥

Proof of Theorem elirrv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5392 . . 3 {𝑥} ∈ V
2 eleq1w 2812 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
3 vsnid 4630 . . . 4 𝑥 ∈ {𝑥}
42, 3speivw 1973 . . 3 𝑦 𝑦 ∈ {𝑥}
5 zfregcl 9554 . . 3 ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
61, 4, 5mp2 9 . 2 𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}
7 velsn 4608 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
8 ax9 2123 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
98equcoms 2020 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
109com12 32 . . . . . . 7 (𝑥𝑥 → (𝑦 = 𝑥𝑥𝑦))
117, 10biimtrid 242 . . . . . 6 (𝑥𝑥 → (𝑦 ∈ {𝑥} → 𝑥𝑦))
12 eleq1w 2812 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
1312notbid 318 . . . . . . . 8 (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥}))
1413rspccv 3588 . . . . . . 7 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥𝑦 → ¬ 𝑥 ∈ {𝑥}))
153, 14mt2i 137 . . . . . 6 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥𝑦)
1611, 15nsyli 157 . . . . 5 (𝑥𝑥 → (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥}))
1716con2d 134 . . . 4 (𝑥𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
1817ralrimiv 3125 . . 3 (𝑥𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
19 ralnex 3056 . . 3 (∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
2018, 19sylib 218 . 2 (𝑥𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
216, 20mt2 200 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  elirr  9557  nd1  10547  nd2  10548  nd3  10549  axunnd  10556  axregndlem1  10562  axregndlem2  10563  axregnd  10564  axnulg  35089  elpotr  35776  exnel  35797  distel  35798  ruvALT  42664  onsupmaxb  43235  ralndv1  47110
  Copyright terms: Public domain W3C validator