Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elirrv | Structured version Visualization version GIF version |
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9363 and efrirr 5570, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . 3 ⊢ {𝑥} ∈ V | |
2 | eleq1w 2821 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
3 | vsnid 4598 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
4 | 2, 3 | speivw 1977 | . . 3 ⊢ ∃𝑦 𝑦 ∈ {𝑥} |
5 | zfregcl 9353 | . . 3 ⊢ ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) | |
6 | 1, 4, 5 | mp2 9 | . 2 ⊢ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} |
7 | velsn 4577 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
8 | ax9 2120 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) | |
9 | 8 | equcoms 2023 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) |
10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑥 → (𝑦 = 𝑥 → 𝑥 ∈ 𝑦)) |
11 | 7, 10 | syl5bi 241 | . . . . . 6 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → 𝑥 ∈ 𝑦)) |
12 | eleq1w 2821 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
13 | 12 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥})) |
14 | 13 | rspccv 3558 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ {𝑥})) |
15 | 3, 14 | mt2i 137 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥 ∈ 𝑦) |
16 | 11, 15 | nsyli 157 | . . . . 5 ⊢ (𝑥 ∈ 𝑥 → (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥})) |
17 | 16 | con2d 134 | . . . 4 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) |
18 | 17 | ralrimiv 3102 | . . 3 ⊢ (𝑥 ∈ 𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
19 | ralnex 3167 | . . 3 ⊢ (∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) | |
20 | 18, 19 | sylib 217 | . 2 ⊢ (𝑥 ∈ 𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
21 | 6, 20 | mt2 199 | 1 ⊢ ¬ 𝑥 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: elirr 9356 nd1 10343 nd2 10344 nd3 10345 axunnd 10352 axregndlem1 10358 axregndlem2 10359 axregnd 10360 elpotr 33757 exnel 33778 distel 33779 ruvALT 40168 ralndv1 44597 |
Copyright terms: Public domain | W3C validator |