MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Visualization version   GIF version

Theorem elirrv 8854
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 8862 and efrirr 5385, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv ¬ 𝑥𝑥

Proof of Theorem elirrv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5185 . . 3 {𝑥} ∈ V
2 eleq1w 2843 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
3 vsnid 4471 . . . 4 𝑥 ∈ {𝑥}
42, 3speiv 1932 . . 3 𝑦 𝑦 ∈ {𝑥}
5 zfregcl 8852 . . 3 ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
61, 4, 5mp2 9 . 2 𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}
7 velsn 4452 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
8 ax9 2064 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
98equcoms 1978 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
109com12 32 . . . . . . 7 (𝑥𝑥 → (𝑦 = 𝑥𝑥𝑦))
117, 10syl5bi 234 . . . . . 6 (𝑥𝑥 → (𝑦 ∈ {𝑥} → 𝑥𝑦))
12 eleq1w 2843 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥}))
1312notbid 310 . . . . . . . 8 (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥}))
1413rspccv 3527 . . . . . . 7 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥𝑦 → ¬ 𝑥 ∈ {𝑥}))
153, 14mt2i 135 . . . . . 6 (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥𝑦)
1611, 15nsyli 157 . . . . 5 (𝑥𝑥 → (∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥}))
1716con2d 132 . . . 4 (𝑥𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥}))
1817ralrimiv 3126 . . 3 (𝑥𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
19 ralnex 3178 . . 3 (∀𝑦 ∈ {𝑥} ¬ ∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
2018, 19sylib 210 . 2 (𝑥𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧𝑦 ¬ 𝑧 ∈ {𝑥})
216, 20mt2 192 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1743  wcel 2051  wral 3083  wrex 3084  Vcvv 3410  {csn 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pr 5183  ax-reg 8850
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-v 3412  df-dif 3827  df-un 3829  df-nul 4174  df-sn 4437  df-pr 4439
This theorem is referenced by:  elirr  8855  ruv  8860  nd1  9806  nd2  9807  nd3  9808  axunnd  9815  axregndlem1  9821  axregndlem2  9822  axregnd  9823  elpotr  32579  exnel  32601  distel  32602  ralndv1  42740
  Copyright terms: Public domain W3C validator