MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Visualization version   GIF version

Theorem elirrv 9508
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. This is trivial to prove from zfregfr 9519 and efrirr 5603 (see elirrvALT 9520), but this proof is direct from ax-reg 9503. (Contributed by NM, 19-Aug-1993.) Reduce axiom dependencies and make use of ax-reg 9503 directly. (Revised by BTernaryTau, 27-Dec-2025.)
Assertion
Ref Expression
elirrv ¬ 𝑥𝑥

Proof of Theorem elirrv
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biimpr 220 . . . . 5 ((𝑦𝑤𝑦 = 𝑥) → (𝑦 = 𝑥𝑦𝑤))
21alimi 1811 . . . 4 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → ∀𝑦(𝑦 = 𝑥𝑦𝑤))
3 elequ1 2116 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑤𝑥𝑤))
43equsalvw 2004 . . . 4 (∀𝑦(𝑦 = 𝑥𝑦𝑤) ↔ 𝑥𝑤)
52, 4sylib 218 . . 3 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → 𝑥𝑤)
63equsexvw 2005 . . . . . . 7 (∃𝑦(𝑦 = 𝑥𝑦𝑤) ↔ 𝑥𝑤)
7 exsimpr 1869 . . . . . . 7 (∃𝑦(𝑦 = 𝑥𝑦𝑤) → ∃𝑦 𝑦𝑤)
86, 7sylbir 235 . . . . . 6 (𝑥𝑤 → ∃𝑦 𝑦𝑤)
9 ax-reg 9503 . . . . . 6 (∃𝑦 𝑦𝑤 → ∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)))
108, 9syl 17 . . . . 5 (𝑥𝑤 → ∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)))
11 elequ1 2116 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
12 elequ1 2116 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1312notbid 318 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 𝑧𝑤 ↔ ¬ 𝑥𝑤))
1411, 13imbi12d 344 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧𝑦 → ¬ 𝑧𝑤) ↔ (𝑥𝑦 → ¬ 𝑥𝑤)))
1514spvv 1988 . . . . . . 7 (∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤) → (𝑥𝑦 → ¬ 𝑥𝑤))
16 con2 135 . . . . . . . . 9 ((𝑥𝑦 → ¬ 𝑥𝑤) → (𝑥𝑤 → ¬ 𝑥𝑦))
1716com12 32 . . . . . . . 8 (𝑥𝑤 → ((𝑥𝑦 → ¬ 𝑥𝑤) → ¬ 𝑥𝑦))
1817anim2d 612 . . . . . . 7 (𝑥𝑤 → ((𝑦𝑤 ∧ (𝑥𝑦 → ¬ 𝑥𝑤)) → (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
1915, 18sylan2i 606 . . . . . 6 (𝑥𝑤 → ((𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)) → (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
2019eximdv 1917 . . . . 5 (𝑥𝑤 → (∃𝑦(𝑦𝑤 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑤)) → ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)))
2110, 20mpd 15 . . . 4 (𝑥𝑤 → ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦))
22 19.29 1873 . . . . 5 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ∃𝑦((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)))
23 biimp 215 . . . . . . . . 9 ((𝑦𝑤𝑦 = 𝑥) → (𝑦𝑤𝑦 = 𝑥))
2423anim1d 611 . . . . . . . 8 ((𝑦𝑤𝑦 = 𝑥) → ((𝑦𝑤 ∧ ¬ 𝑥𝑦) → (𝑦 = 𝑥 ∧ ¬ 𝑥𝑦)))
25 ax9v2 2122 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
2625equcoms 2020 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑥𝑥𝑥𝑦))
2726con3dimp 408 . . . . . . . 8 ((𝑦 = 𝑥 ∧ ¬ 𝑥𝑦) → ¬ 𝑥𝑥)
2824, 27syl6 35 . . . . . . 7 ((𝑦𝑤𝑦 = 𝑥) → ((𝑦𝑤 ∧ ¬ 𝑥𝑦) → ¬ 𝑥𝑥))
2928imp 406 . . . . . 6 (((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3029exlimiv 1930 . . . . 5 (∃𝑦((𝑦𝑤𝑦 = 𝑥) ∧ (𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3122, 30syl 17 . . . 4 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ ∃𝑦(𝑦𝑤 ∧ ¬ 𝑥𝑦)) → ¬ 𝑥𝑥)
3221, 31sylan2 593 . . 3 ((∀𝑦(𝑦𝑤𝑦 = 𝑥) ∧ 𝑥𝑤) → ¬ 𝑥𝑥)
335, 32mpdan 687 . 2 (∀𝑦(𝑦𝑤𝑦 = 𝑥) → ¬ 𝑥𝑥)
34 el 5384 . . . 4 𝑤 𝑥𝑤
354biimpri 228 . . . 4 (𝑥𝑤 → ∀𝑦(𝑦 = 𝑥𝑦𝑤))
3634, 35eximii 1837 . . 3 𝑤𝑦(𝑦 = 𝑥𝑦𝑤)
3736sepexi 5243 . 2 𝑤𝑦(𝑦𝑤𝑦 = 𝑥)
3833, 37exlimiiv 1931 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-sep 5238  ax-pr 5374  ax-reg 9503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780
This theorem is referenced by:  elirr  9510  nd1  10500  nd2  10501  nd3  10502  axunnd  10509  axregndlem1  10515  axregndlem2  10516  axregnd  10517  axnulg  35058  elpotr  35754  exnel  35775  distel  35776  ruvALT  42642  onsupmaxb  43212  ralndv1  47090
  Copyright terms: Public domain W3C validator