| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elirrv | Structured version Visualization version GIF version | ||
| Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9624 and efrirr 5639, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| elirrv | ⊢ ¬ 𝑥 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5409 | . . 3 ⊢ {𝑥} ∈ V | |
| 2 | eleq1w 2818 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
| 3 | vsnid 4644 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | |
| 4 | 2, 3 | speivw 1973 | . . 3 ⊢ ∃𝑦 𝑦 ∈ {𝑥} |
| 5 | zfregcl 9613 | . . 3 ⊢ ({𝑥} ∈ V → (∃𝑦 𝑦 ∈ {𝑥} → ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) | |
| 6 | 1, 4, 5 | mp2 9 | . 2 ⊢ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} |
| 7 | velsn 4622 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 8 | ax9 2123 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) | |
| 9 | 8 | equcoms 2020 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦)) |
| 10 | 9 | com12 32 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑥 → (𝑦 = 𝑥 → 𝑥 ∈ 𝑦)) |
| 11 | 7, 10 | biimtrid 242 | . . . . . 6 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → 𝑥 ∈ 𝑦)) |
| 12 | eleq1w 2818 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ {𝑥} ↔ 𝑥 ∈ {𝑥})) | |
| 13 | 12 | notbid 318 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (¬ 𝑧 ∈ {𝑥} ↔ ¬ 𝑥 ∈ {𝑥})) |
| 14 | 13 | rspccv 3603 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → (𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ {𝑥})) |
| 15 | 3, 14 | mt2i 137 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑥 ∈ 𝑦) |
| 16 | 11, 15 | nsyli 157 | . . . . 5 ⊢ (𝑥 ∈ 𝑥 → (∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} → ¬ 𝑦 ∈ {𝑥})) |
| 17 | 16 | con2d 134 | . . . 4 ⊢ (𝑥 ∈ 𝑥 → (𝑦 ∈ {𝑥} → ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥})) |
| 18 | 17 | ralrimiv 3132 | . . 3 ⊢ (𝑥 ∈ 𝑥 → ∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
| 19 | ralnex 3063 | . . 3 ⊢ (∀𝑦 ∈ {𝑥} ¬ ∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥} ↔ ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) | |
| 20 | 18, 19 | sylib 218 | . 2 ⊢ (𝑥 ∈ 𝑥 → ¬ ∃𝑦 ∈ {𝑥}∀𝑧 ∈ 𝑦 ¬ 𝑧 ∈ {𝑥}) |
| 21 | 6, 20 | mt2 200 | 1 ⊢ ¬ 𝑥 ∈ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: elirr 9616 nd1 10606 nd2 10607 nd3 10608 axunnd 10615 axregndlem1 10621 axregndlem2 10622 axregnd 10623 axnulg 35128 elpotr 35804 exnel 35825 distel 35826 ruvALT 42659 onsupmaxb 43230 ralndv1 47101 |
| Copyright terms: Public domain | W3C validator |