| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnlim | Structured version Visualization version GIF version | ||
| Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) |
| Ref | Expression |
|---|---|
| ssnlim | ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom 7861 | . . . 4 ⊢ Lim ω | |
| 2 | ssel 3943 | . . . . 5 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥})) | |
| 3 | limeq 6347 | . . . . . . . 8 ⊢ (𝑥 = ω → (Lim 𝑥 ↔ Lim ω)) | |
| 4 | 3 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω)) |
| 5 | 4 | elrab 3662 | . . . . . 6 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω)) |
| 6 | 5 | simprbi 496 | . . . . 5 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω) |
| 7 | 2, 6 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω)) |
| 8 | 1, 7 | mt2i 137 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴) |
| 10 | ordom 7855 | . . . 4 ⊢ Ord ω | |
| 11 | ordtri1 6368 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) | |
| 12 | 10, 11 | mpan2 691 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 Ord word 6334 Oncon0 6335 Lim wlim 6336 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |