![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnlim | Structured version Visualization version GIF version |
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) |
Ref | Expression |
---|---|
ssnlim | ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7867 | . . . 4 ⊢ Lim ω | |
2 | ssel 3974 | . . . . 5 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥})) | |
3 | limeq 6373 | . . . . . . . 8 ⊢ (𝑥 = ω → (Lim 𝑥 ↔ Lim ω)) | |
4 | 3 | notbid 317 | . . . . . . 7 ⊢ (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω)) |
5 | 4 | elrab 3682 | . . . . . 6 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω)) |
6 | 5 | simprbi 497 | . . . . 5 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω) |
7 | 2, 6 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω)) |
8 | 1, 7 | mt2i 137 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴) |
9 | 8 | adantl 482 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴) |
10 | ordom 7861 | . . . 4 ⊢ Ord ω | |
11 | ordtri1 6394 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) | |
12 | 10, 11 | mpan2 689 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
13 | 12 | adantr 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
14 | 9, 13 | mpbird 256 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ⊆ wss 3947 Ord word 6360 Oncon0 6361 Lim wlim 6362 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-om 7852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |