MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnlim Structured version   Visualization version   GIF version

Theorem ssnlim 7865
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.)
Assertion
Ref Expression
ssnlim ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ssnlim
StepHypRef Expression
1 limom 7861 . . . 4 Lim ω
2 ssel 3943 . . . . 5 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥}))
3 limeq 6347 . . . . . . . 8 (𝑥 = ω → (Lim 𝑥 ↔ Lim ω))
43notbid 318 . . . . . . 7 (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω))
54elrab 3662 . . . . . 6 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω))
65simprbi 496 . . . . 5 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω)
72, 6syl6 35 . . . 4 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω))
81, 7mt2i 137 . . 3 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴)
98adantl 481 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴)
10 ordom 7855 . . . 4 Ord ω
11 ordtri1 6368 . . . 4 ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1210, 11mpan2 691 . . 3 (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1312adantr 480 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
149, 13mpbird 257 1 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  Ord word 6334  Oncon0 6335  Lim wlim 6336  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator