![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnlim | Structured version Visualization version GIF version |
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) |
Ref | Expression |
---|---|
ssnlim | ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7867 | . . . 4 ⊢ Lim ω | |
2 | ssel 3970 | . . . . 5 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥})) | |
3 | limeq 6369 | . . . . . . . 8 ⊢ (𝑥 = ω → (Lim 𝑥 ↔ Lim ω)) | |
4 | 3 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω)) |
5 | 4 | elrab 3678 | . . . . . 6 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω)) |
6 | 5 | simprbi 496 | . . . . 5 ⊢ (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω) |
7 | 2, 6 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω)) |
8 | 1, 7 | mt2i 137 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴) |
9 | 8 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴) |
10 | ordom 7861 | . . . 4 ⊢ Ord ω | |
11 | ordtri1 6390 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) | |
12 | 10, 11 | mpan2 688 | . . 3 ⊢ (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
13 | 12 | adantr 480 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴)) |
14 | 9, 13 | mpbird 257 | 1 ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 ⊆ wss 3943 Ord word 6356 Oncon0 6357 Lim wlim 6358 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |