Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifr0 | Structured version Visualization version GIF version |
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ifr0 | ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2018 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | vex 3434 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | ideq 5758 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝑥 I 𝑥 |
5 | frirr 5565 | . . . . 5 ⊢ (( I Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
6 | 5 | ex 412 | . . . 4 ⊢ ( I Fr 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
7 | 4, 6 | mt2i 137 | . . 3 ⊢ ( I Fr 𝐴 → ¬ 𝑥 ∈ 𝐴) |
8 | 7 | eq0rdv 4343 | . 2 ⊢ ( I Fr 𝐴 → 𝐴 = ∅) |
9 | fr0 5567 | . . 3 ⊢ I Fr ∅ | |
10 | freq2 5559 | . . 3 ⊢ (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅)) | |
11 | 9, 10 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → I Fr 𝐴) |
12 | 8, 11 | impbii 208 | 1 ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∅c0 4261 class class class wbr 5078 I cid 5487 Fr wfr 5540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-fr 5543 df-xp 5594 df-rel 5595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |