Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifr0 Structured version   Visualization version   GIF version

Theorem ifr0 44482
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ifr0 ( I Fr 𝐴𝐴 = ∅)

Proof of Theorem ifr0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2013 . . . . 5 𝑥 = 𝑥
2 vex 3440 . . . . . 6 𝑥 ∈ V
32ideq 5787 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 231 . . . 4 𝑥 I 𝑥
5 frirr 5587 . . . . 5 (( I Fr 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 412 . . . 4 ( I Fr 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Fr 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4352 . 2 ( I Fr 𝐴𝐴 = ∅)
9 fr0 5589 . . 3 I Fr ∅
10 freq2 5579 . . 3 (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → I Fr 𝐴)
128, 11impbii 209 1 ( I Fr 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  c0 4278   class class class wbr 5086   I cid 5505   Fr wfr 5561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-fr 5564  df-xp 5617  df-rel 5618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator