| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifr0 | Structured version Visualization version GIF version | ||
| Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ifr0 | ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | ideq 5816 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
| 4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝑥 I 𝑥 |
| 5 | frirr 5614 | . . . . 5 ⊢ (( I Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
| 6 | 5 | ex 412 | . . . 4 ⊢ ( I Fr 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
| 7 | 4, 6 | mt2i 137 | . . 3 ⊢ ( I Fr 𝐴 → ¬ 𝑥 ∈ 𝐴) |
| 8 | 7 | eq0rdv 4370 | . 2 ⊢ ( I Fr 𝐴 → 𝐴 = ∅) |
| 9 | fr0 5616 | . . 3 ⊢ I Fr ∅ | |
| 10 | freq2 5606 | . . 3 ⊢ (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅)) | |
| 11 | 9, 10 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → I Fr 𝐴) |
| 12 | 8, 11 | impbii 209 | 1 ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4296 class class class wbr 5107 I cid 5532 Fr wfr 5588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-fr 5591 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |