Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifr0 Structured version   Visualization version   GIF version

Theorem ifr0 42106
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ifr0 ( I Fr 𝐴𝐴 = ∅)

Proof of Theorem ifr0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2013 . . . . 5 𝑥 = 𝑥
2 vex 3441 . . . . . 6 𝑥 ∈ V
32ideq 5774 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 230 . . . 4 𝑥 I 𝑥
5 frirr 5577 . . . . 5 (( I Fr 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 414 . . . 4 ( I Fr 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Fr 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4344 . 2 ( I Fr 𝐴𝐴 = ∅)
9 fr0 5579 . . 3 I Fr ∅
10 freq2 5571 . . 3 (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → I Fr 𝐴)
128, 11impbii 208 1 ( I Fr 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2104  c0 4262   class class class wbr 5081   I cid 5499   Fr wfr 5552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-fr 5555  df-xp 5606  df-rel 5607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator