Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifr0 Structured version   Visualization version   GIF version

Theorem ifr0 42027
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ifr0 ( I Fr 𝐴𝐴 = ∅)

Proof of Theorem ifr0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2015 . . . . 5 𝑥 = 𝑥
2 vex 3434 . . . . . 6 𝑥 ∈ V
32ideq 5755 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 230 . . . 4 𝑥 I 𝑥
5 frirr 5562 . . . . 5 (( I Fr 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 413 . . . 4 ( I Fr 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Fr 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4339 . 2 ( I Fr 𝐴𝐴 = ∅)
9 fr0 5564 . . 3 I Fr ∅
10 freq2 5556 . . 3 (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅))
119, 10mpbiri 257 . 2 (𝐴 = ∅ → I Fr 𝐴)
128, 11impbii 208 1 ( I Fr 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  c0 4257   class class class wbr 5074   I cid 5484   Fr wfr 5537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-br 5075  df-opab 5137  df-id 5485  df-fr 5540  df-xp 5591  df-rel 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator