Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifr0 Structured version   Visualization version   GIF version

Theorem ifr0 43194
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ifr0 ( I Fr 𝐴𝐴 = ∅)

Proof of Theorem ifr0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2015 . . . . 5 𝑥 = 𝑥
2 vex 3478 . . . . . 6 𝑥 ∈ V
32ideq 5850 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 230 . . . 4 𝑥 I 𝑥
5 frirr 5652 . . . . 5 (( I Fr 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 413 . . . 4 ( I Fr 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 137 . . 3 ( I Fr 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 4403 . 2 ( I Fr 𝐴𝐴 = ∅)
9 fr0 5654 . . 3 I Fr ∅
10 freq2 5646 . . 3 (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅))
119, 10mpbiri 257 . 2 (𝐴 = ∅ → I Fr 𝐴)
128, 11impbii 208 1 ( I Fr 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  c0 4321   class class class wbr 5147   I cid 5572   Fr wfr 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-fr 5630  df-xp 5681  df-rel 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator