![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifr0 | Structured version Visualization version GIF version |
Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ifr0 | ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2015 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | ideq 5850 | . . . . 5 ⊢ (𝑥 I 𝑥 ↔ 𝑥 = 𝑥) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝑥 I 𝑥 |
5 | frirr 5652 | . . . . 5 ⊢ (( I Fr 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 I 𝑥) | |
6 | 5 | ex 413 | . . . 4 ⊢ ( I Fr 𝐴 → (𝑥 ∈ 𝐴 → ¬ 𝑥 I 𝑥)) |
7 | 4, 6 | mt2i 137 | . . 3 ⊢ ( I Fr 𝐴 → ¬ 𝑥 ∈ 𝐴) |
8 | 7 | eq0rdv 4403 | . 2 ⊢ ( I Fr 𝐴 → 𝐴 = ∅) |
9 | fr0 5654 | . . 3 ⊢ I Fr ∅ | |
10 | freq2 5646 | . . 3 ⊢ (𝐴 = ∅ → ( I Fr 𝐴 ↔ I Fr ∅)) | |
11 | 9, 10 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → I Fr 𝐴) |
12 | 8, 11 | impbii 208 | 1 ⊢ ( I Fr 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∅c0 4321 class class class wbr 5147 I cid 5572 Fr wfr 5627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-fr 5630 df-xp 5681 df-rel 5682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |