MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nororOLD Structured version   Visualization version   GIF version

Theorem nororOLD 1531
Description: Obsolete version of noror 1530 as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nororOLD ((𝜑𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))

Proof of Theorem nororOLD
StepHypRef Expression
1 notnotb 314 . . 3 ((𝜑𝜓) ↔ ¬ ¬ (𝜑𝜓))
2 df-nor 1523 . . . 4 ((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
32notbii 319 . . 3 (¬ (𝜑 𝜓) ↔ ¬ ¬ (𝜑𝜓))
4 nornot 1526 . . 3 (¬ (𝜑 𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))
51, 3, 43bitr2ri 299 . 2 (((𝜑 𝜓) (𝜑 𝜓)) ↔ (𝜑𝜓))
65bicomi 223 1 ((𝜑𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 843   wnor 1522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-nor 1523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator