Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nororOLD | Structured version Visualization version GIF version |
Description: Obsolete version of noror 1530 as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nororOLD | ⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ ¬ (𝜑 ∨ 𝜓)) | |
2 | df-nor 1523 | . . . 4 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
3 | 2 | notbii 319 | . . 3 ⊢ (¬ (𝜑 ⊽ 𝜓) ↔ ¬ ¬ (𝜑 ∨ 𝜓)) |
4 | nornot 1526 | . . 3 ⊢ (¬ (𝜑 ⊽ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) | |
5 | 1, 3, 4 | 3bitr2ri 299 | . 2 ⊢ (((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓)) ↔ (𝜑 ∨ 𝜓)) |
6 | 5 | bicomi 223 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 ⊽ wnor 1522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-nor 1523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |