| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1515 ssrab 4048 copsex2gb 5785 relop 5830 dmopab3 5899 rnopab3 5936 dfres2 6028 restidsing 6040 fununi 6611 dffv2 6974 dfsup2 9456 kmlem3 10167 recmulnq 10978 dmscut 27775 nbgrel 29319 shne0i 31429 13an22anass 32445 ssiun3 32539 ind1a 32836 bnj1304 34850 bnj1253 35048 dfrecs2 35968 icorempo 37369 inxprnres 38310 disjressuc2 38406 dalem20 39712 ralopabb 43435 rp-isfinite6 43542 rababg 43598 ssrabf 45138 ralfal 45185 |
| Copyright terms: Public domain | W3C validator |