MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr2ri Structured version   Visualization version   GIF version

Theorem 3bitr2ri 299
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2i.1 (𝜑𝜓)
3bitr2i.2 (𝜒𝜓)
3bitr2i.3 (𝜒𝜃)
Assertion
Ref Expression
3bitr2ri (𝜃𝜑)

Proof of Theorem 3bitr2ri
StepHypRef Expression
1 3bitr2i.1 . . 3 (𝜑𝜓)
2 3bitr2i.2 . . 3 (𝜒𝜓)
31, 2bitr4i 277 . 2 (𝜑𝜒)
4 3bitr2i.3 . 2 (𝜒𝜃)
53, 4bitr2i 275 1 (𝜃𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  xorass  1508  nororOLD  1531  ssrab  4002  copsex2gb  5705  relop  5748  dmopab3  5817  dfres2  5938  restidsing  5951  fununi  6493  dffv2  6845  dfsup2  9133  kmlem3  9839  recmulnq  10651  nbgrel  27610  shne0i  29711  ssiun3  30799  cnvoprabOLD  30957  ind1a  31887  bnj1304  32699  bnj1253  32897  dmscut  33932  dfrecs2  34179  icorempo  35449  inxprnres  36354  dalem20  37634  rp-isfinite6  41023  rababg  41070  ssrabf  42553
  Copyright terms: Public domain W3C validator