Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xorass 1508 nororOLD 1531 ssrab 4002 copsex2gb 5705 relop 5748 dmopab3 5817 dfres2 5938 restidsing 5951 fununi 6493 dffv2 6845 dfsup2 9133 kmlem3 9839 recmulnq 10651 nbgrel 27610 shne0i 29711 ssiun3 30799 cnvoprabOLD 30957 ind1a 31887 bnj1304 32699 bnj1253 32897 dmscut 33932 dfrecs2 34179 icorempo 35449 inxprnres 36354 dalem20 37634 rp-isfinite6 41023 rababg 41070 ssrabf 42553 |
Copyright terms: Public domain | W3C validator |