![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xorass 1515 ssrab 4071 copsex2gb 5807 relop 5851 dmopab3 5920 dfres2 6042 restidsing 6053 fununi 6624 dffv2 6987 dfsup2 9439 kmlem3 10147 recmulnq 10959 dmscut 27312 nbgrel 28597 shne0i 30701 13an22anass 31706 ssiun3 31790 cnvoprabOLD 31945 ind1a 33017 bnj1304 33830 bnj1253 34028 dfrecs2 34922 icorempo 36232 inxprnres 37161 disjressuc2 37258 dalem20 38564 ralopabb 42162 rp-isfinite6 42269 rababg 42325 ssrabf 43803 ralfal 43855 |
Copyright terms: Public domain | W3C validator |