![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xorass 1512 ssrab 4096 copsex2gb 5830 relop 5875 dmopab3 5944 dfres2 6070 restidsing 6082 fununi 6653 dffv2 7017 dfsup2 9513 kmlem3 10222 recmulnq 11033 dmscut 27874 nbgrel 29375 shne0i 31480 13an22anass 32493 ssiun3 32581 cnvoprabOLD 32734 ind1a 33983 bnj1304 34795 bnj1253 34993 dfrecs2 35914 icorempo 37317 inxprnres 38248 disjressuc2 38344 dalem20 39650 ralopabb 43373 rp-isfinite6 43480 rababg 43536 ssrabf 45016 ralfal 45066 |
Copyright terms: Public domain | W3C validator |