| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1515 ssrab 4026 copsex2gb 5753 relop 5797 dmopab3 5866 rnopab3 5902 dfres2 5996 restidsing 6008 fununi 6561 dffv2 6922 dfsup2 9353 kmlem3 10066 recmulnq 10877 dmscut 27740 nbgrel 29303 shne0i 31410 13an22anass 32426 ssiun3 32520 ind1a 32815 bnj1304 34788 bnj1253 34986 dfrecs2 35926 icorempo 37327 inxprnres 38268 disjressuc2 38362 dalem20 39675 ralopabb 43387 rp-isfinite6 43494 rababg 43550 nregmodel 44994 ssrabf 45095 ralfal 45142 |
| Copyright terms: Public domain | W3C validator |