| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1515 ssrab 4039 copsex2gb 5772 relop 5817 dmopab3 5886 rnopab3 5923 dfres2 6015 restidsing 6027 fununi 6594 dffv2 6959 dfsup2 9402 kmlem3 10113 recmulnq 10924 dmscut 27730 nbgrel 29274 shne0i 31384 13an22anass 32400 ssiun3 32494 ind1a 32789 bnj1304 34816 bnj1253 35014 dfrecs2 35945 icorempo 37346 inxprnres 38287 disjressuc2 38381 dalem20 39694 ralopabb 43407 rp-isfinite6 43514 rababg 43570 nregmodel 45014 ssrabf 45115 ralfal 45162 |
| Copyright terms: Public domain | W3C validator |