MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr2ri Structured version   Visualization version   GIF version

Theorem 3bitr2ri 300
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr2i.1 (𝜑𝜓)
3bitr2i.2 (𝜒𝜓)
3bitr2i.3 (𝜒𝜃)
Assertion
Ref Expression
3bitr2ri (𝜃𝜑)

Proof of Theorem 3bitr2ri
StepHypRef Expression
1 3bitr2i.1 . . 3 (𝜑𝜓)
2 3bitr2i.2 . . 3 (𝜒𝜓)
31, 2bitr4i 277 . 2 (𝜑𝜒)
4 3bitr2i.3 . 2 (𝜒𝜃)
53, 4bitr2i 275 1 (𝜃𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  xorass  1511  ssrab  4006  copsex2gb  5716  relop  5759  dmopab3  5828  dfres2  5949  restidsing  5962  fununi  6509  dffv2  6863  dfsup2  9203  kmlem3  9908  recmulnq  10720  nbgrel  27707  shne0i  29810  ssiun3  30898  cnvoprabOLD  31055  ind1a  31987  bnj1304  32799  bnj1253  32997  dmscut  34005  dfrecs2  34252  icorempo  35522  inxprnres  36427  dalem20  37707  rp-isfinite6  41125  rababg  41181  ssrabf  42664
  Copyright terms: Public domain W3C validator