Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xorass 1513 ssrab 4017 copsex2gb 5735 relop 5779 dmopab3 5848 dfres2 5968 restidsing 5979 fununi 6545 dffv2 6902 dfsup2 9273 kmlem3 9981 recmulnq 10793 nbgrel 27816 shne0i 29919 ssiun3 31006 cnvoprabOLD 31163 ind1a 32093 bnj1304 32904 bnj1253 33102 dmscut 34063 dfrecs2 34310 icorempo 35578 inxprnres 36509 disjressuc2 36606 dalem20 37912 rp-isfinite6 41346 rababg 41402 ssrabf 42885 |
Copyright terms: Public domain | W3C validator |