![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xorass 1514 ssrab 4070 copsex2gb 5806 relop 5850 dmopab3 5919 dfres2 6041 restidsing 6052 fununi 6623 dffv2 6986 dfsup2 9441 kmlem3 10149 recmulnq 10961 dmscut 27320 nbgrel 28635 shne0i 30739 13an22anass 31744 ssiun3 31828 cnvoprabOLD 31983 ind1a 33086 bnj1304 33899 bnj1253 34097 dfrecs2 34991 icorempo 36318 inxprnres 37247 disjressuc2 37344 dalem20 38650 ralopabb 42244 rp-isfinite6 42351 rababg 42407 ssrabf 43885 ralfal 43937 |
Copyright terms: Public domain | W3C validator |