| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1516 ssrab 4023 copsex2gb 5746 relop 5790 dmopab3 5859 rnopab3 5896 dfres2 5990 restidsing 6002 fununi 6556 dffv2 6917 dfsup2 9328 kmlem3 10044 recmulnq 10855 dmscut 27753 nbgrel 29319 shne0i 31426 13an22anass 32441 ssiun3 32536 ind1a 32838 bnj1304 34829 bnj1253 35027 dfrecs2 35990 icorempo 37391 inxprnres 38332 disjressuc2 38426 dalem20 39738 ralopabb 43450 rp-isfinite6 43557 rababg 43613 nregmodel 45056 ssrabf 45157 ralfal 45204 |
| Copyright terms: Public domain | W3C validator |