| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1515 ssrab 4036 copsex2gb 5769 relop 5814 dmopab3 5883 rnopab3 5920 dfres2 6012 restidsing 6024 fununi 6591 dffv2 6956 dfsup2 9395 kmlem3 10106 recmulnq 10917 dmscut 27723 nbgrel 29267 shne0i 31377 13an22anass 32393 ssiun3 32487 ind1a 32782 bnj1304 34809 bnj1253 35007 dfrecs2 35938 icorempo 37339 inxprnres 38280 disjressuc2 38374 dalem20 39687 ralopabb 43400 rp-isfinite6 43507 rababg 43563 nregmodel 45007 ssrabf 45108 ralfal 45155 |
| Copyright terms: Public domain | W3C validator |