| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2ri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorass 1516 ssrab 4020 copsex2gb 5750 relop 5794 dmopab3 5863 rnopab3 5900 dfres2 5994 restidsing 6006 fununi 6561 dffv2 6923 dfsup2 9335 kmlem3 10051 recmulnq 10862 dmscut 27753 nbgrel 29320 shne0i 31430 13an22anass 32445 ssiun3 32540 ind1a 32845 bnj1304 34852 bnj1253 35050 dfrecs2 36015 icorempo 37416 inxprnres 38351 disjressuc2 38456 dalem20 39813 ralopabb 43529 rp-isfinite6 43636 rababg 43692 nregmodel 45135 ssrabf 45236 ralfal 45283 |
| Copyright terms: Public domain | W3C validator |