Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpdfnan Structured version   Visualization version   GIF version

Theorem ifpdfnan 41093
Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpdfnan ((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤))

Proof of Theorem ifpdfnan
StepHypRef Expression
1 df-nan 1487 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 ifpdfan 41073 . . 3 ((𝜑𝜓) ↔ if-(𝜑, 𝜓, ⊥))
32notbii 320 . 2 (¬ (𝜑𝜓) ↔ ¬ if-(𝜑, 𝜓, ⊥))
4 ifpnot23 41085 . . 3 (¬ if-(𝜑, 𝜓, ⊥) ↔ if-(𝜑, ¬ 𝜓, ¬ ⊥))
5 notfal 1567 . . . 4 (¬ ⊥ ↔ ⊤)
6 ifpbi3 41075 . . . 4 ((¬ ⊥ ↔ ⊤) → (if-(𝜑, ¬ 𝜓, ¬ ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤)))
75, 6ax-mp 5 . . 3 (if-(𝜑, ¬ 𝜓, ¬ ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤))
84, 7bitri 274 . 2 (¬ if-(𝜑, 𝜓, ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤))
91, 3, 83bitri 297 1 ((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  if-wif 1060  wnan 1486  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-nan 1487  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator