Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpdfnan | Structured version Visualization version GIF version |
Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020.) |
Ref | Expression |
---|---|
ifpdfnan | ⊢ ((𝜑 ⊼ 𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan 1488 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
2 | ifpdfan 40758 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, ⊥)) | |
3 | 2 | notbii 323 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ ¬ if-(𝜑, 𝜓, ⊥)) |
4 | ifpnot23 40770 | . . 3 ⊢ (¬ if-(𝜑, 𝜓, ⊥) ↔ if-(𝜑, ¬ 𝜓, ¬ ⊥)) | |
5 | notfal 1571 | . . . 4 ⊢ (¬ ⊥ ↔ ⊤) | |
6 | ifpbi3 40760 | . . . 4 ⊢ ((¬ ⊥ ↔ ⊤) → (if-(𝜑, ¬ 𝜓, ¬ ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (if-(𝜑, ¬ 𝜓, ¬ ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤)) |
8 | 4, 7 | bitri 278 | . 2 ⊢ (¬ if-(𝜑, 𝜓, ⊥) ↔ if-(𝜑, ¬ 𝜓, ⊤)) |
9 | 1, 3, 8 | 3bitri 300 | 1 ⊢ ((𝜑 ⊼ 𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 if-wif 1063 ⊼ wnan 1487 ⊤wtru 1544 ⊥wfal 1555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-nan 1488 df-tru 1546 df-fal 1556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |