Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notornotel2 Structured version   Visualization version   GIF version

Theorem notornotel2 36254
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
Hypothesis
Ref Expression
notornotel2.1 (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒))
Assertion
Ref Expression
notornotel2 (𝜑𝜒)

Proof of Theorem notornotel2
StepHypRef Expression
1 notornotel2.1 . . 3 (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒))
2 orcom 867 . . 3 ((¬ 𝜒𝜓) ↔ (𝜓 ∨ ¬ 𝜒))
31, 2sylnibr 329 . 2 (𝜑 → ¬ (¬ 𝜒𝜓))
43notornotel1 36253 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  ac6s6  36330
  Copyright terms: Public domain W3C validator