Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > notornotel2 | Structured version Visualization version GIF version |
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
Ref | Expression |
---|---|
notornotel2.1 | ⊢ (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒)) |
Ref | Expression |
---|---|
notornotel2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notornotel2.1 | . . 3 ⊢ (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒)) | |
2 | orcom 866 | . . 3 ⊢ ((¬ 𝜒 ∨ 𝜓) ↔ (𝜓 ∨ ¬ 𝜒)) | |
3 | 1, 2 | sylnibr 328 | . 2 ⊢ (𝜑 → ¬ (¬ 𝜒 ∨ 𝜓)) |
4 | 3 | notornotel1 36180 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: ac6s6 36257 |
Copyright terms: Public domain | W3C validator |