Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > notornotel1 | Structured version Visualization version GIF version |
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
Ref | Expression |
---|---|
notornotel1.1 | ⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
notornotel1 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notornotel1.1 | . 2 ⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) | |
2 | ioran 981 | . . . 4 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ↔ (¬ ¬ 𝜓 ∧ ¬ 𝜒)) | |
3 | 2 | biimpi 215 | . . 3 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) → (¬ ¬ 𝜓 ∧ ¬ 𝜒)) |
4 | simpl 483 | . . 3 ⊢ ((¬ ¬ 𝜓 ∧ ¬ 𝜒) → ¬ ¬ 𝜓) | |
5 | notnotr 130 | . . 3 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
6 | 3, 4, 5 | 3syl 18 | . 2 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) → 𝜓) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: notornotel2 36254 ac6s6 36330 |
Copyright terms: Public domain | W3C validator |