Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notornotel1 Structured version   Visualization version   GIF version

Theorem notornotel1 35526
 Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
Hypothesis
Ref Expression
notornotel1.1 (𝜑 → ¬ (¬ 𝜓𝜒))
Assertion
Ref Expression
notornotel1 (𝜑𝜓)

Proof of Theorem notornotel1
StepHypRef Expression
1 notornotel1.1 . 2 (𝜑 → ¬ (¬ 𝜓𝜒))
2 ioran 981 . . . 4 (¬ (¬ 𝜓𝜒) ↔ (¬ ¬ 𝜓 ∧ ¬ 𝜒))
32biimpi 219 . . 3 (¬ (¬ 𝜓𝜒) → (¬ ¬ 𝜓 ∧ ¬ 𝜒))
4 simpl 486 . . 3 ((¬ ¬ 𝜓 ∧ ¬ 𝜒) → ¬ ¬ 𝜓)
5 notnotr 132 . . 3 (¬ ¬ 𝜓𝜓)
63, 4, 53syl 18 . 2 (¬ (¬ 𝜓𝜒) → 𝜓)
71, 6syl 17 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by:  notornotel2  35527  ac6s6  35603
 Copyright terms: Public domain W3C validator