Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6 Structured version   Visualization version   GIF version

Theorem ac6s6 37504
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
ac6s6.1 𝑦𝜓
ac6s6.2 𝐴 ∈ V
ac6s6.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s6 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦   𝑥,𝐴,𝑓   𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s6
StepHypRef Expression
1 hbe1 2138 . . . . . 6 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
2 iftrue 4534 . . . . . . 7 (∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦𝜑}, V) = {𝑦𝜑})
32eqabrd 2875 . . . . . 6 (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))
41, 3exbidh 1869 . . . . 5 (∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ∃𝑦𝜑))
54ibir 268 . . . 4 (∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V))
6 vex 3477 . . . . . 6 𝑦 ∈ V
76exgen 1977 . . . . 5 𝑦 𝑦 ∈ V
81hbn 2290 . . . . . 6 (¬ ∃𝑦𝜑 → ∀𝑦 ¬ ∃𝑦𝜑)
9 iffalse 4537 . . . . . . 7 (¬ ∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦𝜑}, V) = V)
109eleq2d 2818 . . . . . 6 (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))
118, 10exbidh 1869 . . . . 5 (¬ ∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ∃𝑦 𝑦 ∈ V))
127, 11mpbiri 258 . . . 4 (¬ ∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V))
135, 12pm2.61i 182 . . 3 𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)
1413rgenw 3064 . 2 𝑥𝐴𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)
15 nfe1 2146 . . . 4 𝑦𝑦𝜑
16 ac6s6.1 . . . 4 𝑦𝜓
1715, 16nfim 1898 . . 3 𝑦(∃𝑦𝜑𝜓)
18 ac6s6.2 . . 3 𝐴 ∈ V
19 ac6s6.3 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
20 id 22 . . . . . . . . . . . . . . 15 𝜑 → ¬ 𝜑)
2120a1i 11 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝜑))
22 ax-1 6 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
23 tsim3 37464 . . . . . . . . . . . . . . . . . . . 20 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
2423a1d 25 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))))
2522, 24cnf2dd 37423 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
26 tsim3 37464 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
2825, 27cnf2dd 37423 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
29 tsim2 37463 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
3029a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
3128, 30cnf2dd 37423 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ∃𝑦𝜑))
32 tsim2 37463 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
3332a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
3425, 33cnf2dd 37423 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
3531, 34mpdd 43 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
36 tsbi4 37468 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
3736a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
3835, 37cnfn2dd 37425 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ 𝜑)))
3921, 38cnf2dd 37423 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
40 tsim3 37464 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
4140a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
4228, 41cnf2dd 37423 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
43 tsim3 37464 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
4443a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
4542, 44cnf2dd 37423 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
46 tsbi2 37466 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
4746a1d 25 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
4845, 47cnf2dd 37423 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (∃𝑦𝜑𝜓))))
4939, 48cnf1dd 37422 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑𝜓)))
50 tsim2 37463 . . . . . . . . . . . . . . . . . . 19 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
5150a1d 25 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
5242, 51cnf2dd 37423 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑𝑦 = (𝑓𝑥)))
53 simplim 167 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (𝑦 = (𝑓𝑥) → (𝜑𝜓)))
5452, 53syld 47 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝜑𝜓)))
55 tsbi3 37467 . . . . . . . . . . . . . . . . 17 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
5655a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓))))
5754, 56cnfn2dd 37425 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (𝜑 ∨ ¬ 𝜓)))
5821, 57cnf1dd 37422 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ 𝜓))
59 tsim1 37462 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ ∃𝑦𝜑𝜓) ∨ ¬ (∃𝑦𝜑𝜓)))
6059a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑𝜓) ∨ ¬ (∃𝑦𝜑𝜓))))
6160or32dd 37426 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑𝜓)) ∨ 𝜓)))
6258, 61cnf2dd 37423 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → (¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑𝜓))))
6331, 62cnfn1dd 37424 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑𝜓)))
6449, 63contrd 37429 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → 𝜑)
6564a1d 25 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝜑))
66 ax-1 6 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
6723a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) ∨ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))))
6866, 67cnf2dd 37423 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
6926a1d 25 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
7068, 69cnf2dd 37423 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
7129a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
7270, 71cnf2dd 37423 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ∃𝑦𝜑))
7332a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
7468, 73cnf2dd 37423 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
7572, 74mpdd 43 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
76 tsbi3 37467 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)))
7776a1d 25 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑))))
7875, 77cnfn2dd 37425 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝜑)))
7965, 78cnfn2dd 37425 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
8040a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
8170, 80cnf2dd 37423 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
8250a1d 25 . . . . . . . . . . . . . . 15 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 = (𝑓𝑥) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
8381, 82cnf2dd 37423 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝑦 = (𝑓𝑥)))
8483, 53syld 47 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝜑𝜓)))
85 tsbi4 37468 . . . . . . . . . . . . . 14 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓)))
8685a1d 25 . . . . . . . . . . . . 13 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓))))
8784, 86cnfn2dd 37425 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ 𝜑𝜓)))
8865, 87cnfn1dd 37424 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → 𝜓))
8988a1dd 50 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (∃𝑦𝜑𝜓)))
90 tsbi1 37465 . . . . . . . . . . . 12 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9190a1d 25 . . . . . . . . . . 11 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
9291or32dd 37426 . . . . . . . . . 10 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ ¬ (∃𝑦𝜑𝜓))))
9389, 92cnfn2dd 37425 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
9479, 93cnfn1dd 37424 . . . . . . . 8 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9543a1d 25 . . . . . . . . 9 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
9681, 95cnf2dd 37423 . . . . . . . 8 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
9794, 96contrd 37429 . . . . . . 7 (¬ ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))) → ⊥)
9897efald2 37410 . . . . . 6 ((𝑦 = (𝑓𝑥) → (𝜑𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
9919, 98ax-mp 5 . . . . 5 ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
1003, 99ax-mp 5 . . . 4 (∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
1016a1i 11 . . . . . . 7 (¬ ∃𝑦𝜑𝑦 ∈ V)
102 id 22 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
103 tsim2 37463 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
104103ord 861 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
105104a1dd 50 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
106105a1dd 50 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
107102, 106mt3d 148 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ¬ ∃𝑦𝜑)
108107a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → ¬ ∃𝑦𝜑))
109 simplim 167 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑𝑦 ∈ V))
110108, 109syld 47 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → 𝑦 ∈ V))
111 tsim2 37463 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
112111ord 861 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
113112a1dd 50 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
114102, 113mt3d 148 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
115108, 114syld 47 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
116 id 22 . . . . . . . . . . . . . . . . . 18 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))
117116notornotel2 37428 . . . . . . . . . . . . . . . . 17 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V)
118117a1i 11 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V))
119116notornotel1 37427 . . . . . . . . . . . . . . . . . 18 (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))
120119a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
121 tsbi3 37467 . . . . . . . . . . . . . . . . . 18 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)))
122121a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V))))
123120, 122cnfn2dd 37425 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ 𝑦 ∈ V)))
124118, 123cnfn2dd 37425 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
125 trud 1550 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ⊤)
126125a1d 25 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ⊤))
127 tsbi1 37465 . . . . . . . . . . . . . . . . . 18 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
128127a1d 25 . . . . . . . . . . . . . . . . 17 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
129128or32dd 37426 . . . . . . . . . . . . . . . 16 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ¬ ⊤)))
130126, 129cnfn2dd 37425 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
131124, 130cnfn1dd 37424 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
132131a1dd 50 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
133132a1dd 50 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
134 ax-1 6 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
135 tsim3 37464 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))) ∨ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))))
136135a1d 25 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))) ∨ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))))
137134, 136cnf2dd 37423 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))))
138133, 137contrd 37429 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))
139138a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)))
140115, 139cnfn1dd 37424 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → (¬ ⊥ → ¬ 𝑦 ∈ V))
141110, 140contrd 37429 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))) → ⊥)
142141efald2 37410 . . . . . . 7 ((¬ ∃𝑦𝜑𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
143101, 142ax-mp 5 . . . . . 6 ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
14410, 143ax-mp 5 . . . . 5 (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))
145 ax-1 6 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
146 tsim3 37464 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
147146a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
148145, 147cnf2dd 37423 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
149 tsim2 37463 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
150149a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
151148, 150cnf2dd 37423 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ ∃𝑦𝜑))
152 tsim2 37463 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
153152a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))))
154145, 153cnf2dd 37423 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
155151, 154mpdd 43 . . . . . . 7 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
156 id 22 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
157 id 22 . . . . . . . . . . . . . . 15 (¬ (∃𝑦𝜑𝜓) → ¬ (∃𝑦𝜑𝜓))
158157a1i 11 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ¬ (∃𝑦𝜑𝜓)))
159 tsim2 37463 . . . . . . . . . . . . . . 15 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑𝜓)))
160159a1d 25 . . . . . . . . . . . . . 14 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (∃𝑦𝜑 ∨ (∃𝑦𝜑𝜓))))
161158, 160cnf2dd 37423 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ∃𝑦𝜑))
162149a1d 25 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
163161, 162cnfn1dd 37424 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
164163a1dd 50 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (∃𝑦𝜑𝜓) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
165156, 164mt3d 148 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (∃𝑦𝜑𝜓))
166165a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (∃𝑦𝜑𝜓)))
167 tsim3 37464 . . . . . . . . . . . . 13 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
168167a1d 25 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))))
169148, 168cnf2dd 37423 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
170 tsim3 37464 . . . . . . . . . . . 12 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
171170a1d 25 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)) ∨ (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))))
172169, 171cnf2dd 37423 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
173 tsbi1 37465 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
174173a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
175172, 174cnf2dd 37423 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (∃𝑦𝜑𝜓))))
176166, 175cnfn2dd 37425 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V)))
177 trud 1550 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ⊤)
178177a1d 25 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ⊤))
179 tsbi3 37467 . . . . . . . . . . 11 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
180179a1d 25 . . . . . . . . . 10 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
181180or32dd 37426 . . . . . . . . 9 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) ∨ ¬ ⊤)))
182178, 181cnfn2dd 37425 . . . . . . . 8 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤))))
183176, 182cnf1dd 37422 . . . . . . 7 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → (¬ ⊥ → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)))
184155, 183contrd 37429 . . . . . 6 (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))) → ⊥)
185184efald2 37410 . . . . 5 ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ ⊤)) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))))
186144, 185ax-mp 5 . . . 4 (¬ ∃𝑦𝜑 → (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓))))
187100, 186pm2.61i 182 . . 3 (𝑦 = (𝑓𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) ↔ (∃𝑦𝜑𝜓)))
18817, 18, 187ac6s3f 37503 . 2 (∀𝑥𝐴𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦𝜑}, V) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
18914, 188ax-mp 5 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1540  wtru 1541  wfal 1552  wex 1780  wnf 1784  wcel 2105  {cab 2708  wral 3060  Vcvv 3473  ifcif 4528  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642  ax-ac2 10464
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-en 8946  df-r1 9765  df-rank 9766  df-card 9940  df-ac 10117
This theorem is referenced by:  ac6s6f  37505
  Copyright terms: Public domain W3C validator