Proof of Theorem ac6s6
Step | Hyp | Ref
| Expression |
1 | | hbe1 2141 |
. . . . . 6
⊢
(∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) |
2 | | iftrue 4462 |
. . . . . . 7
⊢
(∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) = {𝑦 ∣ 𝜑}) |
3 | 2 | abeq2d 2873 |
. . . . . 6
⊢
(∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) |
4 | 1, 3 | exbidh 1871 |
. . . . 5
⊢
(∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ∃𝑦𝜑)) |
5 | 4 | ibir 267 |
. . . 4
⊢
(∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V)) |
6 | | vex 3426 |
. . . . . 6
⊢ 𝑦 ∈ V |
7 | 6 | exgen 1979 |
. . . . 5
⊢
∃𝑦 𝑦 ∈ V |
8 | 1 | hbn 2295 |
. . . . . 6
⊢ (¬
∃𝑦𝜑 → ∀𝑦 ¬ ∃𝑦𝜑) |
9 | | iffalse 4465 |
. . . . . . 7
⊢ (¬
∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) = V) |
10 | 9 | eleq2d 2824 |
. . . . . 6
⊢ (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) |
11 | 8, 10 | exbidh 1871 |
. . . . 5
⊢ (¬
∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ∃𝑦 𝑦 ∈ V)) |
12 | 7, 11 | mpbiri 257 |
. . . 4
⊢ (¬
∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V)) |
13 | 5, 12 | pm2.61i 182 |
. . 3
⊢
∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) |
14 | 13 | rgenw 3075 |
. 2
⊢
∀𝑥 ∈
𝐴 ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) |
15 | | nfe1 2149 |
. . . 4
⊢
Ⅎ𝑦∃𝑦𝜑 |
16 | | ac6s6.1 |
. . . 4
⊢
Ⅎ𝑦𝜓 |
17 | 15, 16 | nfim 1900 |
. . 3
⊢
Ⅎ𝑦(∃𝑦𝜑 → 𝜓) |
18 | | ac6s6.2 |
. . 3
⊢ 𝐴 ∈ V |
19 | | ac6s6.3 |
. . . . . 6
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
20 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝜑 → ¬ 𝜑) |
21 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝜑)) |
22 | | ax-1 6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
23 | | tsim3 36217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
24 | 23 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))))) |
25 | 22, 24 | cnf2dd 36176 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
26 | | tsim3 36217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
27 | 26 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
28 | 25, 27 | cnf2dd 36176 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
29 | | tsim2 36216 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
30 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
31 | 28, 30 | cnf2dd 36176 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ∃𝑦𝜑)) |
32 | | tsim2 36216 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
33 | 32 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
34 | 25, 33 | cnf2dd 36176 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
35 | 31, 34 | mpdd 43 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
36 | | tsbi4 36221 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
37 | 36 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
38 | 35, 37 | cnfn2dd 36178 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑))) |
39 | 21, 38 | cnf2dd 36176 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
40 | | tsim3 36217 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
41 | 40 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
42 | 28, 41 | cnf2dd 36176 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
43 | | tsim3 36217 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
44 | 43 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
45 | 42, 44 | cnf2dd 36176 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
46 | | tsbi2 36219 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
47 | 46 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
48 | 45, 47 | cnf2dd 36176 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)))) |
49 | 39, 48 | cnf1dd 36175 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → 𝜓))) |
50 | | tsim2 36216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
51 | 50 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
52 | 42, 51 | cnf2dd 36176 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → 𝑦 = (𝑓‘𝑥))) |
53 | | simplim 167 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓))) |
54 | 52, 53 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝜑 ↔ 𝜓))) |
55 | | tsbi3 36220 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
56 | 55 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)))) |
57 | 54, 56 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝜑 ∨ ¬ 𝜓))) |
58 | 21, 57 | cnf1dd 36175 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝜓)) |
59 | | tsim1 36215 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ ∃𝑦𝜑 ∨ 𝜓) ∨ ¬ (∃𝑦𝜑 → 𝜓))) |
60 | 59 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ 𝜓) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
61 | 60 | or32dd 36179 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ 𝜓))) |
62 | 58, 61 | cnf2dd 36176 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
63 | 31, 62 | cnfn1dd 36177 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → 𝜓))) |
64 | 49, 63 | contrd 36182 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → 𝜑) |
65 | 64 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝜑)) |
66 | | ax-1 6 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
67 | 23 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))))) |
68 | 66, 67 | cnf2dd 36176 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
69 | 26 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
70 | 68, 69 | cnf2dd 36176 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
71 | 29 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
72 | 70, 71 | cnf2dd 36176 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
∃𝑦𝜑)) |
73 | 32 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
74 | 68, 73 | cnf2dd 36176 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
75 | 72, 74 | mpdd 43 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
76 | | tsbi3 36220 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
77 | 76 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
78 | 75, 77 | cnfn2dd 36178 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑))) |
79 | 65, 78 | cnfn2dd 36178 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
80 | 40 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
81 | 70, 80 | cnf2dd 36176 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
82 | 50 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
83 | 81, 82 | cnf2dd 36176 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝑦 = (𝑓‘𝑥))) |
84 | 83, 53 | syld 47 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝜑 ↔ 𝜓))) |
85 | | tsbi4 36221 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
86 | 85 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)))) |
87 | 84, 86 | cnfn2dd 36178 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
𝜑 ∨ 𝜓))) |
88 | 65, 87 | cnfn1dd 36177 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝜓)) |
89 | 88 | a1dd 50 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 → 𝜓))) |
90 | | tsbi1 36218 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
91 | 90 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
92 | 91 | or32dd 36179 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
93 | 89, 92 | cnfn2dd 36178 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
94 | 79, 93 | cnfn1dd 36177 |
. . . . . . . 8
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
95 | 43 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
96 | 81, 95 | cnf2dd 36176 |
. . . . . . . 8
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
97 | 94, 96 | contrd 36182 |
. . . . . . 7
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ⊥) |
98 | 97 | efald2 36163 |
. . . . . 6
⊢ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
99 | 19, 98 | ax-mp 5 |
. . . . 5
⊢
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
100 | 3, 99 | ax-mp 5 |
. . . 4
⊢
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
101 | 6 | a1i 11 |
. . . . . . 7
⊢ (¬
∃𝑦𝜑 → 𝑦 ∈ V) |
102 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
103 | | tsim2 36216 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
104 | 103 | ord 860 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
105 | 104 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
106 | 105 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
107 | 102, 106 | mt3d 148 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ¬
∃𝑦𝜑) |
108 | 107 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → ¬ ∃𝑦𝜑)) |
109 | | simplim 167 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 → 𝑦 ∈ V)) |
110 | 108, 109 | syld 47 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → 𝑦 ∈
V)) |
111 | | tsim2 36216 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
112 | 111 | ord 860 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
113 | 112 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
114 | 102, 113 | mt3d 148 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
115 | 108, 114 | syld 47 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
116 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)) |
117 | 116 | notornotel2 36181 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V) |
118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V)) |
119 | 116 | notornotel1 36180 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) |
120 | 119 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
121 | | tsbi3 36220 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
122 | 121 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)))) |
123 | 120, 122 | cnfn2dd 36178 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V))) |
124 | 118, 123 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
125 | | trud 1549 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) →
⊤) |
126 | 125 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ⊤)) |
127 | | tsbi1 36218 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
128 | 127 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
129 | 128 | or32dd 36179 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ¬
⊤))) |
130 | 126, 129 | cnfn2dd 36178 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
131 | 124, 130 | cnfn1dd 36177 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
132 | 131 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
133 | 132 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
134 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
135 | | tsim3 36217 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) ∨ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
136 | 135 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) ∨ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔
⊤))))))) |
137 | 134, 136 | cnf2dd 36176 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
138 | 133, 137 | contrd 36182 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)) |
139 | 138 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → (¬ (𝑦
∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))) |
140 | 115, 139 | cnfn1dd 36177 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → ¬ 𝑦
∈ V)) |
141 | 110, 140 | contrd 36182 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) →
⊥) |
142 | 141 | efald2 36163 |
. . . . . . 7
⊢ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
143 | 101, 142 | ax-mp 5 |
. . . . . 6
⊢ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
144 | 10, 143 | ax-mp 5 |
. . . . 5
⊢ (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) |
145 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
146 | | tsim3 36217 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
147 | 146 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
148 | 145, 147 | cnf2dd 36176 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
149 | | tsim2 36216 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
150 | 149 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
151 | 148, 150 | cnf2dd 36176 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
∃𝑦𝜑)) |
152 | | tsim2 36216 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
153 | 152 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
154 | 145, 153 | cnf2dd 36176 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
155 | 151, 154 | mpdd 43 |
. . . . . . 7
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
156 | | id 22 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
157 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (¬
(∃𝑦𝜑 → 𝜓) → ¬ (∃𝑦𝜑 → 𝜓)) |
158 | 157 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ¬ (∃𝑦𝜑 → 𝜓))) |
159 | | tsim2 36216 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → 𝜓))) |
160 | 159 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → 𝜓)))) |
161 | 158, 160 | cnf2dd 36176 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ∃𝑦𝜑)) |
162 | 149 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
163 | 161, 162 | cnfn1dd 36177 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
164 | 163 | a1dd 50 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
165 | 156, 164 | mt3d 148 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (∃𝑦𝜑 → 𝜓)) |
166 | 165 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ →
(∃𝑦𝜑 → 𝜓))) |
167 | | tsim3 36217 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
168 | 167 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
169 | 148, 168 | cnf2dd 36176 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
170 | | tsim3 36217 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
171 | 170 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
172 | 169, 171 | cnf2dd 36176 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
173 | | tsbi1 36218 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
174 | 173 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
175 | 172, 174 | cnf2dd 36176 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
176 | 166, 175 | cnfn2dd 36178 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
177 | | trud 1549 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ⊤) |
178 | 177 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ →
⊤)) |
179 | | tsbi3 36220 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
180 | 179 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
181 | 180 | or32dd 36179 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ¬
⊤))) |
182 | 178, 181 | cnfn2dd 36178 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
183 | 176, 182 | cnf1dd 36175 |
. . . . . . 7
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
184 | 155, 183 | contrd 36182 |
. . . . . 6
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ⊥) |
185 | 184 | efald2 36163 |
. . . . 5
⊢ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
186 | 144, 185 | ax-mp 5 |
. . . 4
⊢ (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
187 | 100, 186 | pm2.61i 182 |
. . 3
⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) |
188 | 17, 18, 187 | ac6s3f 36256 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) → ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
189 | 14, 188 | ax-mp 5 |
1
⊢
∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |