Proof of Theorem ac6s6
| Step | Hyp | Ref
| Expression |
| 1 | | hbe1 2143 |
. . . . . 6
⊢
(∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) |
| 2 | | iftrue 4531 |
. . . . . . 7
⊢
(∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) = {𝑦 ∣ 𝜑}) |
| 3 | 2 | eqabrd 2884 |
. . . . . 6
⊢
(∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) |
| 4 | 1, 3 | exbidh 1867 |
. . . . 5
⊢
(∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ∃𝑦𝜑)) |
| 5 | 4 | ibir 268 |
. . . 4
⊢
(∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V)) |
| 6 | | vex 3484 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 7 | 6 | exgen 1974 |
. . . . 5
⊢
∃𝑦 𝑦 ∈ V |
| 8 | 1 | hbn 2295 |
. . . . . 6
⊢ (¬
∃𝑦𝜑 → ∀𝑦 ¬ ∃𝑦𝜑) |
| 9 | | iffalse 4534 |
. . . . . . 7
⊢ (¬
∃𝑦𝜑 → if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) = V) |
| 10 | 9 | eleq2d 2827 |
. . . . . 6
⊢ (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) |
| 11 | 8, 10 | exbidh 1867 |
. . . . 5
⊢ (¬
∃𝑦𝜑 → (∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ∃𝑦 𝑦 ∈ V)) |
| 12 | 7, 11 | mpbiri 258 |
. . . 4
⊢ (¬
∃𝑦𝜑 → ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V)) |
| 13 | 5, 12 | pm2.61i 182 |
. . 3
⊢
∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) |
| 14 | 13 | rgenw 3065 |
. 2
⊢
∀𝑥 ∈
𝐴 ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) |
| 15 | | nfe1 2150 |
. . . 4
⊢
Ⅎ𝑦∃𝑦𝜑 |
| 16 | | ac6s6.1 |
. . . 4
⊢
Ⅎ𝑦𝜓 |
| 17 | 15, 16 | nfim 1896 |
. . 3
⊢
Ⅎ𝑦(∃𝑦𝜑 → 𝜓) |
| 18 | | ac6s6.2 |
. . 3
⊢ 𝐴 ∈ V |
| 19 | | ac6s6.3 |
. . . . . 6
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| 20 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝜑 → ¬ 𝜑) |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝜑)) |
| 22 | | ax-1 6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 23 | | tsim3 38139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 24 | 23 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))))) |
| 25 | 22, 24 | cnf2dd 38098 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 26 | | tsim3 38139 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 27 | 26 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 28 | 25, 27 | cnf2dd 38098 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 29 | | tsim2 38138 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 30 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 31 | 28, 30 | cnf2dd 38098 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ∃𝑦𝜑)) |
| 32 | | tsim2 38138 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 33 | 32 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 34 | 25, 33 | cnf2dd 38098 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
| 35 | 31, 34 | mpdd 43 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
| 36 | | tsbi4 38143 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
| 37 | 36 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
| 38 | 35, 37 | cnfn2dd 38100 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ 𝜑))) |
| 39 | 21, 38 | cnf2dd 38098 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
| 40 | | tsim3 38139 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 41 | 40 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 42 | 28, 41 | cnf2dd 38098 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 43 | | tsim3 38139 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 44 | 43 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 45 | 42, 44 | cnf2dd 38098 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 46 | | tsbi2 38141 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 47 | 46 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 48 | 45, 47 | cnf2dd 38098 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (∃𝑦𝜑 → 𝜓)))) |
| 49 | 39, 48 | cnf1dd 38097 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (∃𝑦𝜑 → 𝜓))) |
| 50 | | tsim2 38138 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 51 | 50 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 52 | 42, 51 | cnf2dd 38098 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → 𝑦 = (𝑓‘𝑥))) |
| 53 | | simplim 167 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓))) |
| 54 | 52, 53 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝜑 ↔ 𝜓))) |
| 55 | | tsbi3 38142 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| 56 | 55 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)))) |
| 57 | 54, 56 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (𝜑 ∨ ¬ 𝜓))) |
| 58 | 21, 57 | cnf1dd 38097 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ 𝜓)) |
| 59 | | tsim1 38137 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ ∃𝑦𝜑 ∨ 𝜓) ∨ ¬ (∃𝑦𝜑 → 𝜓))) |
| 60 | 59 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ 𝜓) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
| 61 | 60 | or32dd 38101 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ((¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ 𝜓))) |
| 62 | 58, 61 | cnf2dd 38098 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → (¬ ∃𝑦𝜑 ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
| 63 | 31, 62 | cnfn1dd 38099 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ 𝜑 → ¬ (∃𝑦𝜑 → 𝜓))) |
| 64 | 49, 63 | contrd 38104 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → 𝜑) |
| 65 | 64 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝜑)) |
| 66 | | ax-1 6 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 67 | 23 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) ∨ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))))) |
| 68 | 66, 67 | cnf2dd 38098 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 69 | 26 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 70 | 68, 69 | cnf2dd 38098 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 71 | 29 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 72 | 70, 71 | cnf2dd 38098 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
∃𝑦𝜑)) |
| 73 | 32 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) ∨ ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 74 | 68, 73 | cnf2dd 38098 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
| 75 | 72, 74 | mpdd 43 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
| 76 | | tsbi3 38142 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑))) |
| 77 | 76 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)))) |
| 78 | 75, 77 | cnfn2dd 38100 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝜑))) |
| 79 | 65, 78 | cnfn2dd 38100 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
| 80 | 40 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 81 | 70, 80 | cnf2dd 38098 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 82 | 50 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 = (𝑓‘𝑥) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 83 | 81, 82 | cnf2dd 38098 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝑦 = (𝑓‘𝑥))) |
| 84 | 83, 53 | syld 47 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝜑 ↔ 𝜓))) |
| 85 | | tsbi4 38143 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) |
| 86 | 85 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓)))) |
| 87 | 84, 86 | cnfn2dd 38100 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
𝜑 ∨ 𝜓))) |
| 88 | 65, 87 | cnfn1dd 38099 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → 𝜓)) |
| 89 | 88 | a1dd 50 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ →
(∃𝑦𝜑 → 𝜓))) |
| 90 | | tsbi1 38140 |
. . . . . . . . . . . 12
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 91 | 90 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 92 | 91 | or32dd 38101 |
. . . . . . . . . 10
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
| 93 | 89, 92 | cnfn2dd 38100 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 94 | 79, 93 | cnfn1dd 38099 |
. . . . . . . 8
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 95 | 43 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 96 | 81, 95 | cnf2dd 38098 |
. . . . . . . 8
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 97 | 94, 96 | contrd 38104 |
. . . . . . 7
⊢ (¬
((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) → ⊥) |
| 98 | 97 | efald2 38085 |
. . . . . 6
⊢ ((𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) → ((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 99 | 19, 98 | ax-mp 5 |
. . . . 5
⊢
((∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝜑)) → (∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 100 | 3, 99 | ax-mp 5 |
. . . 4
⊢
(∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 101 | 6 | a1i 11 |
. . . . . . 7
⊢ (¬
∃𝑦𝜑 → 𝑦 ∈ V) |
| 102 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 103 | | tsim2 38138 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 104 | 103 | ord 865 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 105 | 104 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 106 | 105 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
¬ ∃𝑦𝜑 → ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
| 107 | 102, 106 | mt3d 148 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ¬
∃𝑦𝜑) |
| 108 | 107 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → ¬ ∃𝑦𝜑)) |
| 109 | | simplim 167 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 → 𝑦 ∈ V)) |
| 110 | 108, 109 | syld 47 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → 𝑦 ∈
V)) |
| 111 | | tsim2 38138 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 112 | 111 | ord 865 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 113 | 112 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
| 114 | 102, 113 | mt3d 148 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
| 115 | 108, 114 | syld 47 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
| 116 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)) |
| 117 | 116 | notornotel2 38103 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V) |
| 118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ V)) |
| 119 | 116 | notornotel1 38102 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) |
| 120 | 119 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
| 121 | | tsbi3 38142 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V))) |
| 122 | 121 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)))) |
| 123 | 120, 122 | cnfn2dd 38100 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ 𝑦 ∈ V))) |
| 124 | 118, 123 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
| 125 | | trud 1550 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) →
⊤) |
| 126 | 125 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ⊤)) |
| 127 | | tsbi1 38140 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 128 | 127 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 129 | 128 | or32dd 38101 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ¬
⊤))) |
| 130 | 126, 129 | cnfn2dd 38100 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 131 | 124, 130 | cnfn1dd 38099 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 132 | 131 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 133 | 132 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 134 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
| 135 | | tsim3 38139 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) ∨ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))))) |
| 136 | 135 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → (¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) ∨ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔
⊤))))))) |
| 137 | 134, 136 | cnf2dd 38098 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(¬ (𝑦 ∈
if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))))) |
| 138 | 133, 137 | contrd 38104 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V)) |
| 139 | 138 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → (¬ (𝑦
∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V) ∨ ¬ 𝑦 ∈ V))) |
| 140 | 115, 139 | cnfn1dd 38099 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) → (¬
⊥ → ¬ 𝑦
∈ V)) |
| 141 | 110, 140 | contrd 38104 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) →
⊥) |
| 142 | 141 | efald2 38085 |
. . . . . . 7
⊢ ((¬
∃𝑦𝜑 → 𝑦 ∈ V) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 143 | 101, 142 | ax-mp 5 |
. . . . . 6
⊢ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ 𝑦 ∈ V)) → (¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 144 | 10, 143 | ax-mp 5 |
. . . . 5
⊢ (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) |
| 145 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 146 | | tsim3 38139 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 147 | 146 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) ∨ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 148 | 145, 147 | cnf2dd 38098 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 149 | | tsim2 38138 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 150 | 149 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 151 | 148, 150 | cnf2dd 38098 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
∃𝑦𝜑)) |
| 152 | | tsim2 38138 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 153 | 152 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))))) |
| 154 | 145, 153 | cnf2dd 38098 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 155 | 151, 154 | mpdd 43 |
. . . . . . 7
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 156 | | id 22 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ¬ ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 157 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (¬
(∃𝑦𝜑 → 𝜓) → ¬ (∃𝑦𝜑 → 𝜓)) |
| 158 | 157 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ¬ (∃𝑦𝜑 → 𝜓))) |
| 159 | | tsim2 38138 |
. . . . . . . . . . . . . . 15
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → 𝜓))) |
| 160 | 159 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (∃𝑦𝜑 ∨ (∃𝑦𝜑 → 𝜓)))) |
| 161 | 158, 160 | cnf2dd 38098 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ∃𝑦𝜑)) |
| 162 | 149 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (¬ ∃𝑦𝜑 ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 163 | 161, 162 | cnfn1dd 38099 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 164 | 163 | a1dd 50 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (∃𝑦𝜑 → 𝜓) → ((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 165 | 156, 164 | mt3d 148 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (∃𝑦𝜑 → 𝜓)) |
| 166 | 165 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ →
(∃𝑦𝜑 → 𝜓))) |
| 167 | | tsim3 38139 |
. . . . . . . . . . . . 13
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 168 | 167 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) ∨ (¬ ∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))))) |
| 169 | 148, 168 | cnf2dd 38098 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 170 | | tsim3 38139 |
. . . . . . . . . . . 12
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 171 | 170 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))))) |
| 172 | 169, 171 | cnf2dd 38098 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 173 | | tsbi1 38140 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((¬ 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 174 | 173 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)) ∨ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 175 | 172, 174 | cnf2dd 38098 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (∃𝑦𝜑 → 𝜓)))) |
| 176 | 166, 175 | cnfn2dd 38100 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V))) |
| 177 | | trud 1550 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ⊤) |
| 178 | 177 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ →
⊤)) |
| 179 | | tsbi3 38142 |
. . . . . . . . . . 11
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 180 | 179 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ ⊤) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 181 | 180 | or32dd 38101 |
. . . . . . . . 9
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ((𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) ∨ ¬
⊤))) |
| 182 | 178, 181 | cnfn2dd 38100 |
. . . . . . . 8
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ∨ ¬ (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)))) |
| 183 | 176, 182 | cnf1dd 38097 |
. . . . . . 7
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → (¬ ⊥ → ¬
(𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤))) |
| 184 | 155, 183 | contrd 38104 |
. . . . . 6
⊢ (¬
((¬ ∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) → ⊥) |
| 185 | 184 | efald2 38085 |
. . . . 5
⊢ ((¬
∃𝑦𝜑 → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ ⊤)) → (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))))) |
| 186 | 144, 185 | ax-mp 5 |
. . . 4
⊢ (¬
∃𝑦𝜑 → (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓)))) |
| 187 | 100, 186 | pm2.61i 182 |
. . 3
⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) ↔ (∃𝑦𝜑 → 𝜓))) |
| 188 | 17, 18, 187 | ac6s3f 38178 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 𝑦 ∈ if(∃𝑦𝜑, {𝑦 ∣ 𝜑}, V) → ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
| 189 | 14, 188 | ax-mp 5 |
1
⊢
∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |