Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rb-ax1 | Structured version Visualization version GIF version |
Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rb-ax1 | ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim2 968 | . . 3 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
2 | imor 853 | . . 3 ⊢ ((𝜓 → 𝜒) ↔ (¬ 𝜓 ∨ 𝜒)) | |
3 | imor 853 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ↔ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | |
4 | 1, 2, 3 | 3imtr3i 294 | . 2 ⊢ ((¬ 𝜓 ∨ 𝜒) → (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) |
5 | 4 | imori 854 | 1 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 |
This theorem is referenced by: rbsyl 1764 rblem1 1765 rblem2 1766 rblem4 1768 re2luk1 1773 |
Copyright terms: Public domain | W3C validator |