|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rb-ax1 | Structured version Visualization version GIF version | ||
| Description: The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rb-ax1 | ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orim2 969 | . . 3 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
| 2 | imor 853 | . . 3 ⊢ ((𝜓 → 𝜒) ↔ (¬ 𝜓 ∨ 𝜒)) | |
| 3 | imor 853 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ↔ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | |
| 4 | 1, 2, 3 | 3imtr3i 291 | . 2 ⊢ ((¬ 𝜓 ∨ 𝜒) → (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | 
| 5 | 4 | imori 854 | 1 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: rbsyl 1755 rblem1 1756 rblem2 1757 rblem4 1759 re2luk1 1764 | 
| Copyright terms: Public domain | W3C validator |