| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: orim2 969 pm2.82 977 poxp 8107 soxp 8108 relin01 11702 nneo 12618 uzp1 12834 vdwlem9 16960 dfconn2 23306 fin1aufil 23819 dgrlt 26172 aalioulem2 26241 aalioulem5 26244 aalioulem6 26245 aaliou 26246 sqff1o 27092 disjpreima 32513 disjdsct 32626 voliune 34219 volfiniune 34220 satfvsucsuc 35352 naim2 36378 paddss2 39812 lzunuz 42756 acongneg2 42966 nneom 48516 |
| Copyright terms: Public domain | W3C validator |