![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 988 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 |
This theorem is referenced by: orim2 991 pm2.82 999 poxp 7524 soxp 7525 relin01 10842 nneo 11747 uzp1 11961 vdwlem9 16023 dfconn2 21548 fin1aufil 22061 dgrlt 24360 aalioulem2 24426 aalioulem5 24429 aalioulem6 24430 aaliou 24431 sqff1o 25257 disjpreima 29906 disjdsct 29990 voliune 30800 volfiniune 30801 naim2 32889 paddss2 35831 lzunuz 38105 acongneg2 38317 nneom 43108 |
Copyright terms: Public domain | W3C validator |