MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2d Structured version   Visualization version   GIF version

Theorem orim2d 967
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 965 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847
This theorem is referenced by:  orim2  968  pm2.82  976  poxp  8169  soxp  8170  relin01  11814  nneo  12727  uzp1  12944  vdwlem9  17036  dfconn2  23448  fin1aufil  23961  dgrlt  26326  aalioulem2  26393  aalioulem5  26396  aalioulem6  26397  aaliou  26398  sqff1o  27243  disjpreima  32606  disjdsct  32714  voliune  34193  volfiniune  34194  satfvsucsuc  35333  naim2  36356  paddss2  39775  lzunuz  42724  acongneg2  42934  nneom  48261
  Copyright terms: Public domain W3C validator