| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 967 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: orim2 970 pm2.82 978 poxp 8153 soxp 8154 relin01 11787 nneo 12702 uzp1 12919 vdwlem9 17027 dfconn2 23427 fin1aufil 23940 dgrlt 26306 aalioulem2 26375 aalioulem5 26378 aalioulem6 26379 aaliou 26380 sqff1o 27225 disjpreima 32597 disjdsct 32712 voliune 34230 volfiniune 34231 satfvsucsuc 35370 naim2 36391 paddss2 39820 lzunuz 42779 acongneg2 42989 nneom 48448 |
| Copyright terms: Public domain | W3C validator |