| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: orim2 969 pm2.82 977 poxp 8068 soxp 8069 relin01 11662 nneo 12578 uzp1 12794 vdwlem9 16919 dfconn2 23322 fin1aufil 23835 dgrlt 26188 aalioulem2 26257 aalioulem5 26260 aalioulem6 26261 aaliou 26262 sqff1o 27108 disjpreima 32546 disjdsct 32659 voliune 34195 volfiniune 34196 satfvsucsuc 35337 naim2 36363 paddss2 39797 lzunuz 42741 acongneg2 42950 nneom 48513 |
| Copyright terms: Public domain | W3C validator |