Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 963 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 |
This theorem is referenced by: orim2 966 pm2.82 974 poxp 8000 soxp 8001 relin01 11545 nneo 12450 uzp1 12665 vdwlem9 16735 dfconn2 22615 fin1aufil 23128 dgrlt 25472 aalioulem2 25538 aalioulem5 25541 aalioulem6 25542 aaliou 25543 sqff1o 26376 disjpreima 30968 disjdsct 31080 voliune 32242 volfiniune 32243 satfvsucsuc 33372 naim2 34624 paddss2 37874 lzunuz 40627 acongneg2 40837 nneom 45931 |
Copyright terms: Public domain | W3C validator |