![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: orim2 969 pm2.82 977 poxp 8152 soxp 8153 relin01 11785 nneo 12700 uzp1 12917 vdwlem9 17023 dfconn2 23443 fin1aufil 23956 dgrlt 26321 aalioulem2 26390 aalioulem5 26393 aalioulem6 26394 aaliou 26395 sqff1o 27240 disjpreima 32604 disjdsct 32718 voliune 34210 volfiniune 34211 satfvsucsuc 35350 naim2 36373 paddss2 39801 lzunuz 42756 acongneg2 42966 nneom 48377 |
Copyright terms: Public domain | W3C validator |