MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2d Structured version   Visualization version   GIF version

Theorem orim2d 965
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 963 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846
This theorem is referenced by:  orim2  966  pm2.82  974  poxp  8000  soxp  8001  relin01  11545  nneo  12450  uzp1  12665  vdwlem9  16735  dfconn2  22615  fin1aufil  23128  dgrlt  25472  aalioulem2  25538  aalioulem5  25541  aalioulem6  25542  aaliou  25543  sqff1o  26376  disjpreima  30968  disjdsct  31080  voliune  32242  volfiniune  32243  satfvsucsuc  33372  naim2  34624  paddss2  37874  lzunuz  40627  acongneg2  40837  nneom  45931
  Copyright terms: Public domain W3C validator