Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 961 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: orim2 964 pm2.82 972 poxp 7953 soxp 7954 relin01 11482 nneo 12387 uzp1 12601 vdwlem9 16671 dfconn2 22551 fin1aufil 23064 dgrlt 25408 aalioulem2 25474 aalioulem5 25477 aalioulem6 25478 aaliou 25479 sqff1o 26312 disjpreima 30902 disjdsct 31014 voliune 32176 volfiniune 32177 satfvsucsuc 33306 naim2 34558 paddss2 37811 lzunuz 40570 acongneg2 40779 nneom 45825 |
Copyright terms: Public domain | W3C validator |