MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2d Structured version   Visualization version   GIF version

Theorem orim2d 963
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 961 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  orim2  964  pm2.82  972  poxp  7953  soxp  7954  relin01  11482  nneo  12387  uzp1  12601  vdwlem9  16671  dfconn2  22551  fin1aufil  23064  dgrlt  25408  aalioulem2  25474  aalioulem5  25477  aalioulem6  25478  aaliou  25479  sqff1o  26312  disjpreima  30902  disjdsct  31014  voliune  32176  volfiniune  32177  satfvsucsuc  33306  naim2  34558  paddss2  37811  lzunuz  40570  acongneg2  40779  nneom  45825
  Copyright terms: Public domain W3C validator