MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2d Structured version   Visualization version   GIF version

Theorem orim2d 966
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 964 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847
This theorem is referenced by:  orim2  967  pm2.82  975  poxp  8114  soxp  8115  relin01  11738  nneo  12646  uzp1  12863  vdwlem9  16922  dfconn2  22923  fin1aufil  23436  dgrlt  25780  aalioulem2  25846  aalioulem5  25849  aalioulem6  25850  aaliou  25851  sqff1o  26686  disjpreima  31846  disjdsct  31955  voliune  33258  volfiniune  33259  satfvsucsuc  34387  naim2  35323  paddss2  38737  lzunuz  41554  acongneg2  41764  nneom  47261
  Copyright terms: Public domain W3C validator