| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: orim2 969 pm2.82 977 poxp 8064 soxp 8065 relin01 11648 nneo 12563 uzp1 12775 vdwlem9 16903 dfconn2 23335 fin1aufil 23848 dgrlt 26200 aalioulem2 26269 aalioulem5 26272 aalioulem6 26273 aaliou 26274 sqff1o 27120 disjpreima 32566 disjdsct 32688 voliune 34263 volfiniune 34264 satfvsucsuc 35430 naim2 36455 paddss2 39937 lzunuz 42885 acongneg2 43094 nneom 48652 |
| Copyright terms: Public domain | W3C validator |