MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2d Structured version   Visualization version   GIF version

Theorem orim2d 968
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜃𝜃))
2 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2orim12d 966 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  orim2  969  pm2.82  977  poxp  8058  soxp  8059  relin01  11638  nneo  12554  uzp1  12770  vdwlem9  16898  dfconn2  23332  fin1aufil  23845  dgrlt  26197  aalioulem2  26266  aalioulem5  26269  aalioulem6  26270  aaliou  26271  sqff1o  27117  disjpreima  32559  disjdsct  32679  voliune  34237  volfiniune  34238  satfvsucsuc  35397  naim2  36423  paddss2  39856  lzunuz  42800  acongneg2  43009  nneom  48558
  Copyright terms: Public domain W3C validator