![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim2d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim2d | ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | orim12d 965 | 1 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) → (𝜃 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: orim2 968 pm2.82 976 poxp 8169 soxp 8170 relin01 11814 nneo 12727 uzp1 12944 vdwlem9 17036 dfconn2 23448 fin1aufil 23961 dgrlt 26326 aalioulem2 26393 aalioulem5 26396 aalioulem6 26397 aaliou 26398 sqff1o 27243 disjpreima 32606 disjdsct 32714 voliune 34193 volfiniune 34194 satfvsucsuc 35333 naim2 36356 paddss2 39775 lzunuz 42724 acongneg2 42934 nneom 48261 |
Copyright terms: Public domain | W3C validator |