Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthacycspth Structured version   Visualization version   GIF version

Theorem pthacycspth 32428
Description: A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.)
Assertion
Ref Expression
pthacycspth ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem pthacycspth
StepHypRef Expression
1 cyclispth 27576 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
21a1i 11 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃))
3 acycgrcycl 32418 . . . . . . 7 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
43ex 415 . . . . . 6 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
54adantr 483 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
62, 5jcad 515 . . . 4 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃𝐹 = ∅)))
7 spthcycl 32400 . . . . 5 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
87simplbi 500 . . . 4 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → 𝐹(SPaths‘𝐺)𝑃)
96, 8syl6 35 . . 3 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
10 pthisspthorcycl 32399 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
1110adantl 484 . . 3 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
12 orim2 964 . . 3 ((𝐹(Cycles‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃) → ((𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃)))
139, 11, 12sylc 65 . 2 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
14 pm1.2 900 . 2 ((𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)
1513, 14syl 17 1 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  c0 4288   class class class wbr 5063  cfv 6352  Pathscpths 27491  SPathscspths 27492  Cyclesccycls 27564  AcyclicGraphcacycgr 32413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-n0 11896  df-z 11980  df-uz 12242  df-fz 12891  df-fzo 13032  df-hash 13689  df-word 13860  df-wlks 27379  df-trls 27472  df-pths 27495  df-spths 27496  df-cycls 27566  df-acycgr 32414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator