Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthacycspth Structured version   Visualization version   GIF version

Theorem pthacycspth 35189
Description: A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.)
Assertion
Ref Expression
pthacycspth ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem pthacycspth
StepHypRef Expression
1 cyclispth 29773 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
21a1i 11 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃))
3 acycgrcycl 35179 . . . . . . 7 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
43ex 412 . . . . . 6 (𝐺 ∈ AcyclicGraph → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
54adantr 480 . . . . 5 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹 = ∅))
62, 5jcad 512 . . . 4 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃𝐹 = ∅)))
7 spthcycl 35161 . . . . 5 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
87simplbi 497 . . . 4 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → 𝐹(SPaths‘𝐺)𝑃)
96, 8syl6 35 . . 3 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(Cycles‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
10 pthisspthorcycl 29778 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
1110adantl 481 . . 3 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
12 orim2 969 . . 3 ((𝐹(Cycles‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃) → ((𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃)))
139, 11, 12sylc 65 . 2 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
14 pm1.2 903 . 2 ((𝐹(SPaths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)
1513, 14syl 17 1 ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  c0 4283   class class class wbr 5091  cfv 6481  Pathscpths 29686  SPathscspths 29687  Cyclesccycls 29761  AcyclicGraphcacycgr 35174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-wlks 29576  df-trls 29667  df-pths 29690  df-spths 29691  df-cycls 29763  df-acycgr 35175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator