| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.43 1024 pssirr 4066 dfnul4 4298 dfnul3 4300 rabnc 4354 ralnralall 4478 imadif 6600 fiint 9277 fiintOLD 9278 kmlem16 10119 zorn2lem4 10452 nnunb 12438 indstr 12875 bwth 23297 lgsquadlem2 27292 frgrregord013 30324 difrab2 32427 ifeqeqx 32471 sgn3da 32759 ballotlemodife 34489 sbn1ALT 36846 poimirlem30 37644 clsk1indlem4 44033 atnaiana 46921 plcofph 46942 |
| Copyright terms: Public domain | W3C validator |