| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.43 1024 pssirr 4056 dfnul4 4288 dfnul3 4290 rabnc 4344 ralnralall 4468 imadif 6570 fiint 9235 fiintOLD 9236 kmlem16 10079 zorn2lem4 10412 nnunb 12398 indstr 12835 bwth 23313 lgsquadlem2 27308 frgrregord013 30357 difrab2 32460 ifeqeqx 32504 sgn3da 32792 ballotlemodife 34465 sbn1ALT 36831 poimirlem30 37629 clsk1indlem4 44017 atnaiana 46908 plcofph 46929 |
| Copyright terms: Public domain | W3C validator |