![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.43 1023 pssirr 4126 dfnul4 4354 dfnul3 4356 dfnul2OLD 4357 dfnul3OLD 4358 noelOLD 4361 rabnc 4414 ralnralall 4538 imadif 6662 fiint 9394 fiintOLD 9395 kmlem16 10235 zorn2lem4 10568 nnunb 12549 indstr 12981 bwth 23439 lgsquadlem2 27443 frgrregord013 30427 difrab2 32526 ifeqeqx 32565 ballotlemodife 34462 sgn3da 34506 sbn1ALT 36824 poimirlem30 37610 clsk1indlem4 44006 atnaiana 46838 plcofph 46859 |
Copyright terms: Public domain | W3C validator |