| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.43 1024 pssirr 4083 dfnul4 4315 dfnul3 4317 rabnc 4371 ralnralall 4495 imadif 6625 fiint 9343 fiintOLD 9344 kmlem16 10185 zorn2lem4 10518 nnunb 12502 indstr 12937 bwth 23353 lgsquadlem2 27349 frgrregord013 30381 difrab2 32484 ifeqeqx 32528 sgn3da 32818 ballotlemodife 34535 sbn1ALT 36881 poimirlem30 37679 clsk1indlem4 44035 atnaiana 46919 plcofph 46940 |
| Copyright terms: Public domain | W3C validator |