![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.43 1024 pssirr 4113 dfnul4 4341 dfnul3 4343 rabnc 4397 ralnralall 4521 imadif 6652 fiint 9364 fiintOLD 9365 kmlem16 10204 zorn2lem4 10537 nnunb 12520 indstr 12956 bwth 23434 lgsquadlem2 27440 frgrregord013 30424 difrab2 32526 ifeqeqx 32563 ballotlemodife 34479 sgn3da 34523 sbn1ALT 36841 poimirlem30 37637 clsk1indlem4 44034 atnaiana 46873 plcofph 46894 |
Copyright terms: Public domain | W3C validator |