| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.43 1024 pssirr 4053 dfnul4 4285 dfnul3 4287 rabnc 4341 ralnralall 4465 imadif 6565 fiint 9211 kmlem16 10054 zorn2lem4 10387 nnunb 12374 indstr 12811 bwth 23323 lgsquadlem2 27317 frgrregord013 30370 difrab2 32472 ifeqeqx 32517 sgn3da 32812 ballotlemodife 34506 sbn1ALT 36891 poimirlem30 37689 clsk1indlem4 44076 atnaiana 46953 plcofph 46974 |
| Copyright terms: Public domain | W3C validator |