![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 400 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: pm4.43 1019 pssirr 4099 indifdirOLD 4284 dfnul4 4323 dfnul3 4325 dfnul2OLD 4326 dfnul3OLD 4327 noelOLD 4330 rabnc 4386 ralnralall 4517 imadif 6631 fiint 9326 kmlem16 10162 zorn2lem4 10496 nnunb 12472 indstr 12904 bwth 23134 lgsquadlem2 27120 frgrregord013 29915 difrab2 32005 ifeqeqx 32041 ballotlemodife 33794 sgn3da 33838 sbn1ALT 36040 poimirlem30 36821 clsk1indlem4 43097 atnaiana 45931 plcofph 45952 |
Copyright terms: Public domain | W3C validator |