MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.24 Structured version   Visualization version   GIF version

Theorem pm3.24 402
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Assertion
Ref Expression
pm3.24 ¬ (𝜑 ∧ ¬ 𝜑)

Proof of Theorem pm3.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 iman 401 . 2 ((𝜑𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑))
31, 2mpbi 229 1 ¬ (𝜑 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  pm4.43  1019  pssirr  4031  indifdirOLD  4216  dfnul4  4255  dfnul3  4257  dfnul2OLD  4258  dfnul3OLD  4259  noelOLD  4262  rabnc  4318  ralnralall  4446  imadif  6502  fiint  9021  kmlem16  9852  zorn2lem4  10186  nnunb  12159  indstr  12585  bwth  22469  lgsquadlem2  26434  frgrregord013  28660  difrab2  30746  ifeqeqx  30786  ballotlemodife  32364  sgn3da  32408  sbn1ALT  34969  poimirlem30  35734  clsk1indlem4  41543  atnaiana  44305  plcofph  44326
  Copyright terms: Public domain W3C validator