![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.43 1021 pssirr 4096 indifdirOLD 4281 dfnul4 4320 dfnul3 4322 dfnul2OLD 4323 dfnul3OLD 4324 noelOLD 4327 rabnc 4383 ralnralall 4514 imadif 6631 fiint 9342 kmlem16 10182 zorn2lem4 10516 nnunb 12492 indstr 12924 bwth 23307 lgsquadlem2 27307 frgrregord013 30198 difrab2 32289 ifeqeqx 32326 ballotlemodife 34107 sgn3da 34151 sbn1ALT 36325 poimirlem30 37112 clsk1indlem4 43446 atnaiana 46277 plcofph 46298 |
Copyright terms: Public domain | W3C validator |