Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.43 1019 pssirr 4031 indifdirOLD 4216 dfnul4 4255 dfnul3 4257 dfnul2OLD 4258 dfnul3OLD 4259 noelOLD 4262 rabnc 4318 ralnralall 4446 imadif 6502 fiint 9021 kmlem16 9852 zorn2lem4 10186 nnunb 12159 indstr 12585 bwth 22469 lgsquadlem2 26434 frgrregord013 28660 difrab2 30746 ifeqeqx 30786 ballotlemodife 32364 sgn3da 32408 sbn1ALT 34969 poimirlem30 35734 clsk1indlem4 41543 atnaiana 44305 plcofph 44326 |
Copyright terms: Public domain | W3C validator |