![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | iman 403 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm4.43 1022 pssirr 4101 indifdirOLD 4286 dfnul4 4325 dfnul3 4327 dfnul2OLD 4328 dfnul3OLD 4329 noelOLD 4332 rabnc 4388 ralnralall 4519 imadif 6633 fiint 9324 kmlem16 10160 zorn2lem4 10494 nnunb 12468 indstr 12900 bwth 22914 lgsquadlem2 26884 frgrregord013 29648 difrab2 31738 ifeqeqx 31774 ballotlemodife 33496 sgn3da 33540 sbn1ALT 35737 poimirlem30 36518 clsk1indlem4 42795 atnaiana 45633 plcofph 45654 |
Copyright terms: Public domain | W3C validator |