MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.24 Structured version   Visualization version   GIF version

Theorem pm3.24 402
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Assertion
Ref Expression
pm3.24 ¬ (𝜑 ∧ ¬ 𝜑)

Proof of Theorem pm3.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 iman 401 . 2 ((𝜑𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑))
31, 2mpbi 230 1 ¬ (𝜑 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.43  1023  pssirr  4126  dfnul4  4354  dfnul3  4356  dfnul2OLD  4357  dfnul3OLD  4358  noelOLD  4361  rabnc  4414  ralnralall  4538  imadif  6662  fiint  9394  fiintOLD  9395  kmlem16  10235  zorn2lem4  10568  nnunb  12549  indstr  12981  bwth  23439  lgsquadlem2  27443  frgrregord013  30427  difrab2  32526  ifeqeqx  32565  ballotlemodife  34462  sgn3da  34506  sbn1ALT  36824  poimirlem30  37610  clsk1indlem4  44006  atnaiana  46838  plcofph  46859
  Copyright terms: Public domain W3C validator