| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.24 | Structured version Visualization version GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | iman 401 | . 2 ⊢ ((𝜑 → 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.43 1024 pssirr 4052 dfnul4 4284 dfnul3 4286 rabnc 4340 ralnralall 4464 imadif 6570 fiint 9218 kmlem16 10064 zorn2lem4 10397 nnunb 12384 indstr 12816 bwth 23326 lgsquadlem2 27320 frgrregord013 30377 difrab2 32479 ifeqeqx 32524 sgn3da 32822 ballotlemodife 34532 sbn1ALT 36923 poimirlem30 37710 clsk1indlem4 44161 atnaiana 47047 plcofph 47068 |
| Copyright terms: Public domain | W3C validator |