MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.2 Structured version   Visualization version   GIF version

Theorem pm1.2 901
Description: Axiom *1.2 of [WhiteheadRussell] p. 96, which they call "Taut". (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.2 ((𝜑𝜑) → 𝜑)

Proof of Theorem pm1.2
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21, 1jaoi 854 1 ((𝜑𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  oridm  902  rb-ax4  1758  sotrieq  5532  swoer  8528  pthacycspth  33119  paddidm  37855
  Copyright terms: Public domain W3C validator