Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Structured version   Visualization version   GIF version

Theorem paddidm 39840
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddidm ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)

Proof of Theorem paddidm
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝐾𝐵)
2 eqid 2729 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 39753 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
5 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 eqid 2729 . . . . . 6 (join‘𝐾) = (join‘𝐾)
7 paddidm.p . . . . . 6 + = (+𝑃𝐾)
85, 6, 2, 7elpadd 39798 . . . . 5 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
91, 4, 4, 8syl3anc 1373 . . . 4 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
10 pm1.2 903 . . . . . 6 ((𝑝𝑋𝑝𝑋) → 𝑝𝑋)
1110a1i 11 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝𝑋𝑝𝑋) → 𝑝𝑋))
125, 6, 2, 3psubspi 39746 . . . . . . 7 (((𝐾𝐵𝑋𝑆𝑝 ∈ (Atoms‘𝐾)) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋)
13123exp1 1353 . . . . . 6 (𝐾𝐵 → (𝑋𝑆 → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝𝑋))))
1413imp4b 421 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋))
1511, 14jaod 859 . . . 4 ((𝐾𝐵𝑋𝑆) → (((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → 𝑝𝑋))
169, 15sylbid 240 . . 3 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) → 𝑝𝑋))
1716ssrdv 3941 . 2 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) ⊆ 𝑋)
182, 7sspadd1 39814 . . 3 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑋))
191, 4, 4, 18syl3anc 1373 . 2 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (𝑋 + 𝑋))
2017, 19eqssd 3953 1 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  lecple 17168  joincjn 18217  Atomscatm 39262  PSubSpcpsubsp 39495  +𝑃cpadd 39794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-psubsp 39502  df-padd 39795
This theorem is referenced by:  paddclN  39841  paddss  39844  pmod1i  39847
  Copyright terms: Public domain W3C validator