| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddidm | Structured version Visualization version GIF version | ||
| Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.) |
| Ref | Expression |
|---|---|
| paddidm.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| paddidm.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddidm | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝐾 ∈ 𝐵) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | paddidm.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 4 | 2, 3 | psubssat 39756 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 5 | eqid 2737 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | eqid 2737 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | paddidm.p | . . . . . 6 ⊢ + = (+𝑃‘𝐾) | |
| 8 | 5, 6, 2, 7 | elpadd 39801 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))) |
| 9 | 1, 4, 4, 8 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))) |
| 10 | pm1.2 904 | . . . . . 6 ⊢ ((𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋) | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → ((𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋)) |
| 12 | 5, 6, 2, 3 | psubspi 39749 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ 𝑋) |
| 13 | 12 | 3exp1 1353 | . . . . . 6 ⊢ (𝐾 ∈ 𝐵 → (𝑋 ∈ 𝑆 → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝 ∈ 𝑋)))) |
| 14 | 13 | imp4b 421 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝 ∈ 𝑋)) |
| 15 | 11, 14 | jaod 860 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (((𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → 𝑝 ∈ 𝑋)) |
| 16 | 9, 15 | sylbid 240 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑝 ∈ (𝑋 + 𝑋) → 𝑝 ∈ 𝑋)) |
| 17 | 16 | ssrdv 3989 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) ⊆ 𝑋) |
| 18 | 2, 7 | sspadd1 39817 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑋)) |
| 19 | 1, 4, 4, 18 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (𝑋 + 𝑋)) |
| 20 | 17, 19 | eqssd 4001 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 lecple 17304 joincjn 18357 Atomscatm 39264 PSubSpcpsubsp 39498 +𝑃cpadd 39797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-psubsp 39505 df-padd 39798 |
| This theorem is referenced by: paddclN 39844 paddss 39847 pmod1i 39850 |
| Copyright terms: Public domain | W3C validator |