Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Structured version   Visualization version   GIF version

Theorem paddidm 39824
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddidm ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)

Proof of Theorem paddidm
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝐾𝐵)
2 eqid 2735 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 39737 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
5 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 eqid 2735 . . . . . 6 (join‘𝐾) = (join‘𝐾)
7 paddidm.p . . . . . 6 + = (+𝑃𝐾)
85, 6, 2, 7elpadd 39782 . . . . 5 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
91, 4, 4, 8syl3anc 1370 . . . 4 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
10 pm1.2 903 . . . . . 6 ((𝑝𝑋𝑝𝑋) → 𝑝𝑋)
1110a1i 11 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝𝑋𝑝𝑋) → 𝑝𝑋))
125, 6, 2, 3psubspi 39730 . . . . . . 7 (((𝐾𝐵𝑋𝑆𝑝 ∈ (Atoms‘𝐾)) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋)
13123exp1 1351 . . . . . 6 (𝐾𝐵 → (𝑋𝑆 → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝𝑋))))
1413imp4b 421 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋))
1511, 14jaod 859 . . . 4 ((𝐾𝐵𝑋𝑆) → (((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → 𝑝𝑋))
169, 15sylbid 240 . . 3 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) → 𝑝𝑋))
1716ssrdv 4001 . 2 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) ⊆ 𝑋)
182, 7sspadd1 39798 . . 3 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑋))
191, 4, 4, 18syl3anc 1370 . 2 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (𝑋 + 𝑋))
2017, 19eqssd 4013 1 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  Atomscatm 39245  PSubSpcpsubsp 39479  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-psubsp 39486  df-padd 39779
This theorem is referenced by:  paddclN  39825  paddss  39828  pmod1i  39831
  Copyright terms: Public domain W3C validator