MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Visualization version   GIF version

Theorem sotrieq 5523
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 5517 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 713 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 pm1.2 900 . . . . . 6 ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)
42, 3nsyl 140 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐵𝐵𝑅𝐵))
5 breq2 5074 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
6 breq1 5073 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐶𝑅𝐵))
75, 6orbi12d 915 . . . . . 6 (𝐵 = 𝐶 → ((𝐵𝑅𝐵𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
87notbid 317 . . . . 5 (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
94, 8syl5ibcom 244 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
109con2d 134 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶))
11 solin 5519 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1088 . . . . . 6 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 217 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
14 or12 917 . . . . 5 ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1513, 14sylib 217 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1615ord 860 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶𝐶𝑅𝐵)))
1710, 16impbid 211 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶))
1817con2bid 354 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495
This theorem is referenced by:  sotrieq2  5524  sossfld  6078  soisores  7178  soisoi  7179  weniso  7205  wemapsolem  9239  distrlem4pr  10713  addcanpr  10733  sqgt0sr  10793  lttri2  10988  xrlttri2  12805  xrltne  12826  sotrine  33640  soseq  33730
  Copyright terms: Public domain W3C validator