![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotrieq | Structured version Visualization version GIF version |
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
sotrieq | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sonr 5632 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 716 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | pm1.2 902 | . . . . . 6 ⊢ ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) → 𝐵𝑅𝐵) | |
4 | 2, 3 | nsyl 140 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵)) |
5 | breq2 5170 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
6 | breq1 5169 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐶𝑅𝐵)) | |
7 | 5, 6 | orbi12d 917 | . . . . . 6 ⊢ (𝐵 = 𝐶 → ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
9 | 4, 8 | syl5ibcom 245 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
10 | 9 | con2d 134 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶)) |
11 | solin 5634 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
12 | 3orass 1090 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
13 | 11, 12 | sylib 218 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
14 | or12 919 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
15 | 13, 14 | sylib 218 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
16 | 15 | ord 863 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
17 | 10, 16 | impbid 212 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶)) |
18 | 17 | con2bid 354 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 Or wor 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 df-so 5608 |
This theorem is referenced by: sotrieq2 5639 sotrine 5647 sossfld 6217 soisores 7363 soisoi 7364 weniso 7390 soseq 8200 wemapsolem 9619 distrlem4pr 11095 addcanpr 11115 sqgt0sr 11175 lttri2 11372 xrlttri2 13204 xrltne 13225 oneptri 43218 |
Copyright terms: Public domain | W3C validator |