| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotrieq | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| sotrieq | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr 5585 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
| 2 | 1 | adantrr 717 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
| 3 | pm1.2 903 | . . . . . 6 ⊢ ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) → 𝐵𝑅𝐵) | |
| 4 | 2, 3 | nsyl 140 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵)) |
| 5 | breq2 5123 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
| 6 | breq1 5122 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐶𝑅𝐵)) | |
| 7 | 5, 6 | orbi12d 918 | . . . . . 6 ⊢ (𝐵 = 𝐶 → ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 8 | 7 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 9 | 4, 8 | syl5ibcom 245 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 10 | 9 | con2d 134 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶)) |
| 11 | solin 5588 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
| 12 | 3orass 1089 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
| 13 | 11, 12 | sylib 218 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 14 | or12 920 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 16 | 15 | ord 864 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| 17 | 10, 16 | impbid 212 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶)) |
| 18 | 17 | con2bid 354 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-po 5561 df-so 5562 |
| This theorem is referenced by: sotrieq2 5593 sotrine 5601 sossfld 6175 soisores 7320 soisoi 7321 weniso 7347 soseq 8158 wemapsolem 9564 distrlem4pr 11040 addcanpr 11060 sqgt0sr 11120 lttri2 11317 xrlttri2 13158 xrltne 13179 oneptri 43281 |
| Copyright terms: Public domain | W3C validator |