MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Visualization version   GIF version

Theorem sotrieq 5627
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 5621 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 717 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 pm1.2 903 . . . . . 6 ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)
42, 3nsyl 140 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐵𝐵𝑅𝐵))
5 breq2 5152 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐵𝑅𝐶))
6 breq1 5151 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝑅𝐵𝐶𝑅𝐵))
75, 6orbi12d 918 . . . . . 6 (𝐵 = 𝐶 → ((𝐵𝑅𝐵𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
87notbid 318 . . . . 5 (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
94, 8syl5ibcom 245 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
109con2d 134 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶))
11 solin 5623 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
12 3orass 1089 . . . . . 6 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
1311, 12sylib 218 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)))
14 or12 920 . . . . 5 ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1513, 14sylib 218 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶𝐶𝑅𝐵)))
1615ord 864 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶𝐶𝑅𝐵)))
1710, 16impbid 212 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶))
1817con2bid 354 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1537  wcel 2106   class class class wbr 5148   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-po 5597  df-so 5598
This theorem is referenced by:  sotrieq2  5628  sotrine  5636  sossfld  6208  soisores  7347  soisoi  7348  weniso  7374  soseq  8183  wemapsolem  9588  distrlem4pr  11064  addcanpr  11084  sqgt0sr  11144  lttri2  11341  xrlttri2  13181  xrltne  13202  oneptri  43246
  Copyright terms: Public domain W3C validator