![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotrieq | Structured version Visualization version GIF version |
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
sotrieq | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sonr 5569 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 716 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | pm1.2 903 | . . . . . 6 ⊢ ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) → 𝐵𝑅𝐵) | |
4 | 2, 3 | nsyl 140 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵)) |
5 | breq2 5110 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | |
6 | breq1 5109 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵𝑅𝐵 ↔ 𝐶𝑅𝐵)) | |
7 | 5, 6 | orbi12d 918 | . . . . . 6 ⊢ (𝐵 = 𝐶 → ((𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝐵 = 𝐶 → (¬ (𝐵𝑅𝐵 ∨ 𝐵𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
9 | 4, 8 | syl5ibcom 244 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 → ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
10 | 9 | con2d 134 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) → ¬ 𝐵 = 𝐶)) |
11 | solin 5571 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | |
12 | 3orass 1091 | . . . . . 6 ⊢ ((𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | |
13 | 11, 12 | sylib 217 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
14 | or12 920 | . . . . 5 ⊢ ((𝐵𝑅𝐶 ∨ (𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) ↔ (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ∨ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
16 | 15 | ord 863 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ 𝐵 = 𝐶 → (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
17 | 10, 16 | impbid 211 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ ¬ 𝐵 = 𝐶)) |
18 | 17 | con2bid 355 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 Or wor 5545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-po 5546 df-so 5547 |
This theorem is referenced by: sotrieq2 5576 sotrine 5584 sossfld 6139 soisores 7273 soisoi 7274 weniso 7300 soseq 8092 wemapsolem 9487 distrlem4pr 10963 addcanpr 10983 sqgt0sr 11043 lttri2 11238 xrlttri2 13062 xrltne 13083 oneptri 41594 |
Copyright terms: Public domain | W3C validator |