| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.542 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.542 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm10.542 | ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 387 | . . 3 ⊢ ((𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → (𝜑 → 𝜓))) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ ∀𝑥(𝜒 → (𝜑 → 𝜓))) |
| 3 | 19.21v 1938 | . 2 ⊢ (∀𝑥(𝜒 → (𝜑 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |