| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.55 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.55 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm10.55 | ⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) ↔ (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1867 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) → (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) |
| 3 | exintr 1891 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
| 4 | 3 | imdistanri 569 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓))) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) ↔ (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |