| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbii 1850 2exanali 1860 4exdistrv 1956 3exdistr 1960 cbvex4vw 2042 eeeanv 2352 ee4anv 2353 ee4anvOLD 2354 2exsb 2363 cbvex4v 2420 2sb5rf 2477 sbel2x 2479 2mo2 2647 r3ex 3184 reeanlem 3216 rexcomf 3287 cgsex4g 3512 ceqsex3v 3521 ceqsex4v 3522 ceqsex8v 3524 copsexgw 5470 copsexg 5471 copsex2g 5473 vopelopabsb 5509 opabn0 5533 elxp2 5683 rabxp 5707 elxp3 5725 elvv 5734 elvvv 5735 copsex2gb 5790 elcnv2 5862 cnvuni 5871 cnvopab 6131 xpdifid 6162 coass 6259 fununi 6616 dfmpt3 6677 tpres 7198 dfoprab2 7470 cbvoprab3v 7504 dmoprab 7515 rnoprab 7517 mpomptx 7525 resoprab 7530 elrnmpores 7550 ov3 7575 ov6g 7576 uniuni 7761 opabex3rd 7970 oprabex3 7981 wfrlem4OLD 8331 oeeu 8620 xpassen 9085 sbthfilem 9217 zorn2lem6 10520 ltresr 11159 axaddf 11164 axmulf 11165 hashfun 14460 hash2prb 14495 5oalem7 31646 mpomptxf 32660 eulerpartlemgvv 34413 bnj600 34955 bnj916 34969 bnj983 34987 bnj986 34991 bnj996 34992 bnj1021 35002 dfacycgr1 35171 satfv1 35390 elima4 35798 brtxp2 35904 brpprod3a 35909 brpprod3b 35910 elfuns 35938 brcart 35955 brimg 35960 brapply 35961 brsuccf 35964 brrestrict 35972 dfrdg4 35974 ellines 36175 bj-cbvex4vv 36828 itg2addnclem3 37702 brxrn2 38398 dfxrn2 38399 ecxrn 38410 inxpxrn 38418 rnxrn 38421 dalem20 39717 dvhopellsm 41141 diblsmopel 41195 ralopabb 43402 en2pr 43538 pm11.52 44378 pm11.6 44383 pm11.7 44387 opelopab4 44543 stoweidlem35 46031 fundcmpsurbijinj 47391 mpomptx2 48277 |
| Copyright terms: Public domain | W3C validator |