| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbii 1850 2exanali 1860 4exdistrv 1956 3exdistr 1960 cbvex4vw 2042 eeeanv 2348 ee4anv 2349 ee4anvOLD 2350 2exsb 2358 cbvex4v 2413 2sb5rf 2470 sbel2x 2472 2mo2 2640 r3ex 3168 reeanlem 3200 rexcomf 3269 cgsex4g 3485 ceqsex3v 3494 ceqsex4v 3495 ceqsex8v 3497 copsexgw 5437 copsexg 5438 copsex2g 5440 vopelopabsb 5476 opabn0 5500 elxp2 5647 rabxp 5671 elxp3 5689 elvv 5698 elvvv 5699 copsex2gb 5753 elcnv2 5824 cnvuni 5833 cnvopab 6090 xpdifid 6121 coass 6218 fununi 6561 dfmpt3 6620 tpres 7141 dfoprab2 7411 cbvoprab3v 7445 dmoprab 7456 rnoprab 7458 mpomptx 7466 resoprab 7471 elrnmpores 7491 ov3 7516 ov6g 7517 uniuni 7702 opabex3rd 7908 oprabex3 7919 oeeu 8528 xpassen 8995 sbthfilem 9122 zorn2lem6 10414 ltresr 11053 axaddf 11058 axmulf 11059 hashfun 14362 hash2prb 14397 5oalem7 31622 mpomptxf 32634 eulerpartlemgvv 34343 bnj600 34885 bnj916 34899 bnj983 34917 bnj986 34921 bnj996 34922 bnj1021 34932 dfacycgr1 35116 satfv1 35335 elima4 35748 brtxp2 35854 brpprod3a 35859 brpprod3b 35860 elfuns 35888 brcart 35905 brimg 35910 brapply 35911 brsuccf 35914 brrestrict 35922 dfrdg4 35924 ellines 36125 bj-cbvex4vv 36778 itg2addnclem3 37652 brxrn2 38342 dfxrn2 38343 ecxrn 38358 inxpxrn 38366 rnxrn 38369 dmqsblocks 38830 dalem20 39672 dvhopellsm 41096 diblsmopel 41150 ralopabb 43384 en2pr 43520 pm11.52 44360 pm11.6 44365 pm11.7 44369 opelopab4 44525 stoweidlem35 46017 fundcmpsurbijinj 47395 mpomptx2 48320 |
| Copyright terms: Public domain | W3C validator |