| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1849 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 3exbii 1851 2exanali 1861 4exdistrv 1957 3exdistr 1961 cbvex4vw 2043 eeeanv 2350 ee4anv 2351 ee4anvOLD 2352 2exsb 2360 cbvex4v 2415 2sb5rf 2472 sbel2x 2474 2mo2 2642 r3ex 3171 reeanlem 3203 rexcomf 3271 cgsex4g 3483 ceqsex3v 3492 ceqsex4v 3493 ceqsex8v 3495 copsexgw 5430 copsexg 5431 copsex2g 5433 vopelopabsb 5469 opabn0 5493 elxp2 5640 rabxp 5664 elxp3 5682 elvv 5691 elvvv 5692 copsex2gb 5746 elcnv2 5817 cnvuni 5826 cnvopab 6084 xpdifid 6115 coass 6213 fununi 6556 dfmpt3 6615 tpres 7135 dfoprab2 7404 cbvoprab3v 7438 dmoprab 7449 rnoprab 7451 mpomptx 7459 resoprab 7464 elrnmpores 7484 ov3 7509 ov6g 7510 uniuni 7695 opabex3rd 7898 oprabex3 7909 oeeu 8518 xpassen 8984 sbthfilem 9107 zorn2lem6 10389 ltresr 11028 axaddf 11033 axmulf 11034 hashfun 14341 hash2prb 14376 5oalem7 31635 mpomptxf 32654 eulerpartlemgvv 34384 bnj600 34926 bnj916 34940 bnj983 34958 bnj986 34962 bnj996 34963 bnj1021 34973 dfacycgr1 35176 satfv1 35395 elima4 35808 brtxp2 35914 brpprod3a 35919 brpprod3b 35920 elfuns 35948 brcart 35965 brimg 35970 brapply 35971 brsuccf 35974 brrestrict 35982 dfrdg4 35984 ellines 36185 bj-cbvex4vv 36838 itg2addnclem3 37712 brxrn2 38402 dfxrn2 38403 ecxrn 38418 inxpxrn 38426 rnxrn 38429 dmqsblocks 38890 dalem20 39731 dvhopellsm 41155 diblsmopel 41209 ralopabb 43443 en2pr 43579 pm11.52 44419 pm11.6 44424 pm11.7 44428 opelopab4 44583 stoweidlem35 46072 fundcmpsurbijinj 47440 mpomptx2 48365 |
| Copyright terms: Public domain | W3C validator |