Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1851 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 3exbii 1853 2exanali 1864 4exdistrv 1961 3exdistr 1965 cbvex4vw 2046 eeeanv 2350 ee4anv 2351 2exsb 2358 cbvex4v 2415 2sb5rf 2472 sbel2x 2474 2mo2 2649 rexcomf 3283 reeanlem 3290 ceqsex3v 3474 ceqsex4v 3475 ceqsex8v 3477 copsexgw 5398 copsexg 5399 copsex2g 5401 vopelopabsb 5435 opabn0 5459 elxp2 5604 rabxp 5626 elxp3 5644 elvv 5652 elvvv 5653 copsex2gb 5705 elcnv2 5775 cnvuni 5784 xpdifid 6060 coass 6158 fununi 6493 dfmpt3 6551 tpres 7058 dfoprab2 7311 dmoprab 7354 rnoprab 7356 mpomptx 7365 resoprab 7370 elrnmpores 7389 ov3 7413 ov6g 7414 uniuni 7590 opabex3rd 7782 oprabex3 7793 wfrlem4OLD 8114 oeeu 8396 xpassen 8806 sbthfilem 8941 zorn2lem6 10188 ltresr 10827 axaddf 10832 axmulf 10833 hashfun 14080 hash2prb 14114 5oalem7 29923 mpomptxf 30918 eulerpartlemgvv 32243 bnj600 32799 bnj916 32813 bnj983 32831 bnj986 32835 bnj996 32836 bnj1021 32846 dfacycgr1 33006 satfv1 33225 elima4 33656 brtxp2 34110 brpprod3a 34115 brpprod3b 34116 elfuns 34144 brcart 34161 brimg 34166 brapply 34167 brsuccf 34170 brrestrict 34178 dfrdg4 34180 ellines 34381 bj-cbvex4vv 34914 itg2addnclem3 35757 brxrn2 36432 dfxrn2 36433 ecxrn 36444 inxpxrn 36448 rnxrn 36451 dalem20 37634 dvhopellsm 39058 diblsmopel 39112 en2pr 41043 pm11.52 41894 pm11.6 41899 pm11.7 41903 opelopab4 42060 stoweidlem35 43466 fundcmpsurbijinj 44750 mpomptx2 45558 |
Copyright terms: Public domain | W3C validator |