| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbii 1850 2exanali 1860 4exdistrv 1956 3exdistr 1960 cbvex4vw 2042 eeeanv 2348 ee4anv 2349 ee4anvOLD 2350 2exsb 2358 cbvex4v 2413 2sb5rf 2470 sbel2x 2472 2mo2 2640 r3ex 3176 reeanlem 3208 rexcomf 3277 cgsex4g 3494 ceqsex3v 3503 ceqsex4v 3504 ceqsex8v 3506 copsexgw 5450 copsexg 5451 copsex2g 5453 vopelopabsb 5489 opabn0 5513 elxp2 5662 rabxp 5686 elxp3 5704 elvv 5713 elvvv 5714 copsex2gb 5769 elcnv2 5841 cnvuni 5850 cnvopab 6110 xpdifid 6141 coass 6238 fununi 6591 dfmpt3 6652 tpres 7175 dfoprab2 7447 cbvoprab3v 7481 dmoprab 7492 rnoprab 7494 mpomptx 7502 resoprab 7507 elrnmpores 7527 ov3 7552 ov6g 7553 uniuni 7738 opabex3rd 7945 oprabex3 7956 oeeu 8567 xpassen 9035 sbthfilem 9162 zorn2lem6 10454 ltresr 11093 axaddf 11098 axmulf 11099 hashfun 14402 hash2prb 14437 5oalem7 31589 mpomptxf 32601 eulerpartlemgvv 34367 bnj600 34909 bnj916 34923 bnj983 34941 bnj986 34945 bnj996 34946 bnj1021 34956 dfacycgr1 35131 satfv1 35350 elima4 35763 brtxp2 35869 brpprod3a 35874 brpprod3b 35875 elfuns 35903 brcart 35920 brimg 35925 brapply 35926 brsuccf 35929 brrestrict 35937 dfrdg4 35939 ellines 36140 bj-cbvex4vv 36793 itg2addnclem3 37667 brxrn2 38357 dfxrn2 38358 ecxrn 38373 inxpxrn 38381 rnxrn 38384 dmqsblocks 38845 dalem20 39687 dvhopellsm 41111 diblsmopel 41165 ralopabb 43400 en2pr 43536 pm11.52 44376 pm11.6 44381 pm11.7 44385 opelopab4 44541 stoweidlem35 46033 fundcmpsurbijinj 47411 mpomptx2 48323 |
| Copyright terms: Public domain | W3C validator |