![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1846 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1846 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 3exbii 1848 2exanali 1859 4exdistrv 1956 3exdistr 1960 cbvex4vw 2041 eeeanv 2356 ee4anv 2357 2exsb 2366 cbvex4v 2423 2sb5rf 2480 sbel2x 2482 2mo2 2650 r3ex 3204 reeanlem 3234 rexcomf 3309 cgsex4g 3538 ceqsex3v 3549 ceqsex4v 3550 ceqsex8v 3552 copsexgw 5510 copsexg 5511 copsex2g 5513 vopelopabsb 5548 opabn0 5572 elxp2 5724 rabxp 5748 elxp3 5766 elvv 5774 elvvv 5775 copsex2gb 5830 elcnv2 5902 cnvuni 5911 cnvopab 6169 xpdifid 6199 coass 6296 fununi 6653 dfmpt3 6714 tpres 7238 dfoprab2 7508 cbvoprab3v 7542 dmoprab 7552 rnoprab 7554 mpomptx 7563 resoprab 7568 elrnmpores 7588 ov3 7613 ov6g 7614 uniuni 7797 opabex3rd 8007 oprabex3 8018 wfrlem4OLD 8368 oeeu 8659 xpassen 9132 sbthfilem 9264 zorn2lem6 10570 ltresr 11209 axaddf 11214 axmulf 11215 hashfun 14486 hash2prb 14521 5oalem7 31692 mpomptxf 32695 eulerpartlemgvv 34341 bnj600 34895 bnj916 34909 bnj983 34927 bnj986 34931 bnj996 34932 bnj1021 34942 dfacycgr1 35112 satfv1 35331 elima4 35739 brtxp2 35845 brpprod3a 35850 brpprod3b 35851 elfuns 35879 brcart 35896 brimg 35901 brapply 35902 brsuccf 35905 brrestrict 35913 dfrdg4 35915 ellines 36116 bj-cbvex4vv 36771 itg2addnclem3 37633 brxrn2 38331 dfxrn2 38332 ecxrn 38343 inxpxrn 38351 rnxrn 38354 dalem20 39650 dvhopellsm 41074 diblsmopel 41128 ralopabb 43373 en2pr 43509 pm11.52 44356 pm11.6 44361 pm11.7 44365 opelopab4 44522 stoweidlem35 45956 fundcmpsurbijinj 47284 mpomptx2 48059 |
Copyright terms: Public domain | W3C validator |