Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1847 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1847 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
This theorem depends on definitions: df-bi 206 df-ex 1779 |
This theorem is referenced by: 3exbii 1849 2exanali 1860 4exdistrv 1957 3exdistr 1961 cbvex4vw 2042 eeeanv 2345 ee4anv 2346 2exsb 2355 cbvex4v 2412 2sb5rf 2469 sbel2x 2471 2mo2 2646 reeanlem 3211 rexcomf 3281 ceqsex3v 3488 ceqsex4v 3489 ceqsex8v 3491 copsexgw 5416 copsexg 5417 copsex2g 5419 vopelopabsb 5455 opabn0 5479 elxp2 5624 rabxp 5646 elxp3 5664 elvv 5672 elvvv 5673 copsex2gb 5728 elcnv2 5799 cnvuni 5808 xpdifid 6086 coass 6183 fununi 6538 dfmpt3 6597 tpres 7108 dfoprab2 7366 dmoprab 7409 rnoprab 7411 mpomptx 7420 resoprab 7425 elrnmpores 7444 ov3 7468 ov6g 7469 uniuni 7645 opabex3rd 7845 oprabex3 7856 wfrlem4OLD 8178 oeeu 8470 xpassen 8896 sbthfilem 9031 zorn2lem6 10317 ltresr 10956 axaddf 10961 axmulf 10962 hashfun 14211 hash2prb 14245 5oalem7 30120 mpomptxf 31114 eulerpartlemgvv 32439 bnj600 32995 bnj916 33009 bnj983 33027 bnj986 33031 bnj996 33032 bnj1021 33042 dfacycgr1 33202 satfv1 33421 elima4 33844 brtxp2 34242 brpprod3a 34247 brpprod3b 34248 elfuns 34276 brcart 34293 brimg 34298 brapply 34299 brsuccf 34302 brrestrict 34310 dfrdg4 34312 ellines 34513 bj-cbvex4vv 35046 itg2addnclem3 35888 brxrn2 36599 dfxrn2 36600 ecxrn 36611 inxpxrn 36619 rnxrn 36622 dalem20 37917 dvhopellsm 39341 diblsmopel 39395 en2pr 41380 pm11.52 42231 pm11.6 42236 pm11.7 42240 opelopab4 42397 stoweidlem35 43818 fundcmpsurbijinj 45119 mpomptx2 45927 |
Copyright terms: Public domain | W3C validator |