| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbii 1850 2exanali 1860 4exdistrv 1956 3exdistr 1960 cbvex4vw 2042 eeeanv 2348 ee4anv 2349 ee4anvOLD 2350 2exsb 2359 cbvex4v 2414 2sb5rf 2471 sbel2x 2473 2mo2 2641 r3ex 3177 reeanlem 3209 rexcomf 3279 cgsex4g 3497 ceqsex3v 3506 ceqsex4v 3507 ceqsex8v 3509 copsexgw 5453 copsexg 5454 copsex2g 5456 vopelopabsb 5492 opabn0 5516 elxp2 5665 rabxp 5689 elxp3 5707 elvv 5716 elvvv 5717 copsex2gb 5772 elcnv2 5844 cnvuni 5853 cnvopab 6113 xpdifid 6144 coass 6241 fununi 6594 dfmpt3 6655 tpres 7178 dfoprab2 7450 cbvoprab3v 7484 dmoprab 7495 rnoprab 7497 mpomptx 7505 resoprab 7510 elrnmpores 7530 ov3 7555 ov6g 7556 uniuni 7741 opabex3rd 7948 oprabex3 7959 oeeu 8570 xpassen 9040 sbthfilem 9168 zorn2lem6 10461 ltresr 11100 axaddf 11105 axmulf 11106 hashfun 14409 hash2prb 14444 5oalem7 31596 mpomptxf 32608 eulerpartlemgvv 34374 bnj600 34916 bnj916 34930 bnj983 34948 bnj986 34952 bnj996 34953 bnj1021 34963 dfacycgr1 35138 satfv1 35357 elima4 35770 brtxp2 35876 brpprod3a 35881 brpprod3b 35882 elfuns 35910 brcart 35927 brimg 35932 brapply 35933 brsuccf 35936 brrestrict 35944 dfrdg4 35946 ellines 36147 bj-cbvex4vv 36800 itg2addnclem3 37674 brxrn2 38364 dfxrn2 38365 ecxrn 38380 inxpxrn 38388 rnxrn 38391 dmqsblocks 38852 dalem20 39694 dvhopellsm 41118 diblsmopel 41172 ralopabb 43407 en2pr 43543 pm11.52 44383 pm11.6 44388 pm11.7 44392 opelopab4 44548 stoweidlem35 46040 fundcmpsurbijinj 47415 mpomptx2 48327 |
| Copyright terms: Public domain | W3C validator |