Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1851 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1851 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 3exbii 1853 2exanali 1864 4exdistrv 1961 3exdistr 1965 cbvex4vw 2046 eeeanv 2349 ee4anv 2350 2exsb 2359 cbvex4v 2416 2sb5rf 2473 sbel2x 2475 2mo2 2650 rexcomf 3285 reeanlem 3293 ceqsex3v 3485 ceqsex4v 3486 ceqsex8v 3488 copsexgw 5405 copsexg 5406 copsex2g 5408 vopelopabsb 5443 opabn0 5467 elxp2 5614 rabxp 5636 elxp3 5654 elvv 5662 elvvv 5663 copsex2gb 5718 elcnv2 5789 cnvuni 5798 xpdifid 6076 coass 6173 fununi 6516 dfmpt3 6576 tpres 7085 dfoprab2 7342 dmoprab 7385 rnoprab 7387 mpomptx 7396 resoprab 7401 elrnmpores 7420 ov3 7444 ov6g 7445 uniuni 7621 opabex3rd 7818 oprabex3 7829 wfrlem4OLD 8152 oeeu 8443 xpassen 8862 sbthfilem 8993 zorn2lem6 10266 ltresr 10905 axaddf 10910 axmulf 10911 hashfun 14161 hash2prb 14195 5oalem7 30031 mpomptxf 31025 eulerpartlemgvv 32352 bnj600 32908 bnj916 32922 bnj983 32940 bnj986 32944 bnj996 32945 bnj1021 32955 dfacycgr1 33115 satfv1 33334 elima4 33759 brtxp2 34192 brpprod3a 34197 brpprod3b 34198 elfuns 34226 brcart 34243 brimg 34248 brapply 34249 brsuccf 34252 brrestrict 34260 dfrdg4 34262 ellines 34463 bj-cbvex4vv 34996 itg2addnclem3 35839 brxrn2 36512 dfxrn2 36513 ecxrn 36524 inxpxrn 36528 rnxrn 36531 dalem20 37714 dvhopellsm 39138 diblsmopel 39192 en2pr 41161 pm11.52 42012 pm11.6 42017 pm11.7 42021 opelopab4 42178 stoweidlem35 43583 fundcmpsurbijinj 44873 mpomptx2 45681 |
Copyright terms: Public domain | W3C validator |