| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
| 3 | 2 | exbii 1849 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 3exbii 1851 2exanali 1861 4exdistrv 1957 3exdistr 1961 cbvex4vw 2043 eeeanv 2352 ee4anv 2353 ee4anvOLD 2354 2exsb 2362 cbvex4v 2417 2sb5rf 2474 sbel2x 2476 2mo2 2644 r3ex 3172 reeanlem 3204 rexcomf 3272 cgsex4g 3484 ceqsex3v 3492 ceqsex4v 3493 ceqsex8v 3495 copsexgw 5433 copsexg 5434 copsex2g 5436 vopelopabsb 5472 opabn0 5496 elxp2 5643 rabxp 5667 elxp3 5685 elvv 5694 elvvv 5695 copsex2gb 5750 elcnv2 5821 cnvuni 5830 cnvopab 6088 xpdifid 6120 coass 6218 fununi 6561 dfmpt3 6620 tpres 7141 dfoprab2 7410 cbvoprab3v 7444 dmoprab 7455 rnoprab 7457 mpomptx 7465 resoprab 7470 elrnmpores 7490 ov3 7515 ov6g 7516 uniuni 7701 opabex3rd 7904 oprabex3 7915 oeeu 8524 xpassen 8991 sbthfilem 9114 zorn2lem6 10399 ltresr 11038 axaddf 11043 axmulf 11044 hashfun 14346 hash2prb 14381 5oalem7 31642 mpomptxf 32663 eulerpartlemgvv 34410 bnj600 34952 bnj916 34966 bnj983 34984 bnj986 34988 bnj996 34989 bnj1021 34999 dfacycgr1 35209 satfv1 35428 elima4 35841 brtxp2 35944 brpprod3a 35949 brpprod3b 35950 elfuns 35978 brcart 35995 brimg 36000 brapply 36001 lemsuccf 36004 brrestrict 36014 dfrdg4 36016 ellines 36217 bj-cbvex4vv 36870 itg2addnclem3 37733 brxrn2 38428 dfxrn2 38429 ecxrn 38450 inxpxrn 38462 rnxrn 38465 dmqsblocks 38971 dalem20 39812 dvhopellsm 41236 diblsmopel 41290 ralopabb 43528 en2pr 43664 pm11.52 44504 pm11.6 44509 pm11.7 44513 opelopab4 44668 stoweidlem35 46157 fundcmpsurbijinj 47534 mpomptx2 48459 |
| Copyright terms: Public domain | W3C validator |