![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1845 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1845 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 3exbii 1847 2exanali 1858 4exdistrv 1954 3exdistr 1958 cbvex4vw 2039 eeeanv 2351 ee4anv 2352 2exsb 2361 cbvex4v 2418 2sb5rf 2475 sbel2x 2477 2mo2 2645 r3ex 3196 reeanlem 3226 rexcomf 3301 cgsex4g 3526 ceqsex3v 3537 ceqsex4v 3538 ceqsex8v 3540 copsexgw 5501 copsexg 5502 copsex2g 5504 vopelopabsb 5539 opabn0 5563 elxp2 5713 rabxp 5737 elxp3 5755 elvv 5763 elvvv 5764 copsex2gb 5819 elcnv2 5891 cnvuni 5900 cnvopab 6160 xpdifid 6190 coass 6287 fununi 6643 dfmpt3 6703 tpres 7221 dfoprab2 7491 cbvoprab3v 7525 dmoprab 7535 rnoprab 7537 mpomptx 7546 resoprab 7551 elrnmpores 7571 ov3 7596 ov6g 7597 uniuni 7781 opabex3rd 7990 oprabex3 8001 wfrlem4OLD 8351 oeeu 8640 xpassen 9105 sbthfilem 9236 zorn2lem6 10539 ltresr 11178 axaddf 11183 axmulf 11184 hashfun 14473 hash2prb 14508 5oalem7 31689 mpomptxf 32694 eulerpartlemgvv 34358 bnj600 34912 bnj916 34926 bnj983 34944 bnj986 34948 bnj996 34949 bnj1021 34959 dfacycgr1 35129 satfv1 35348 elima4 35757 brtxp2 35863 brpprod3a 35868 brpprod3b 35869 elfuns 35897 brcart 35914 brimg 35919 brapply 35920 brsuccf 35923 brrestrict 35931 dfrdg4 35933 ellines 36134 bj-cbvex4vv 36788 itg2addnclem3 37660 brxrn2 38357 dfxrn2 38358 ecxrn 38369 inxpxrn 38377 rnxrn 38380 dalem20 39676 dvhopellsm 41100 diblsmopel 41154 ralopabb 43401 en2pr 43537 pm11.52 44383 pm11.6 44388 pm11.7 44392 opelopab4 44549 stoweidlem35 45991 fundcmpsurbijinj 47335 mpomptx2 48180 |
Copyright terms: Public domain | W3C validator |