Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm13.181OLD | Structured version Visualization version GIF version |
Description: Obsolete version of pm13.181 3025 as of 30-Oct-2024. (Contributed by Andrew Salmon, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
pm13.181OLD | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | pm13.18 3024 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
3 | 1, 2 | sylanb 580 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶) → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |