Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2948 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: pm2.61ne 3031 pm2.61dne 3032 pm2.61iine 3036 raaan 4452 raaanv 4453 iinrab2 5000 iinvdif 5010 riinrab 5014 reusv2lem2 5323 po2ne 5520 xpriindi 5748 dmxpid 5842 dmxpss 6079 rnxpid 6081 cnvpo 6194 xpcoid 6197 dfpo2 6203 fnprb 7093 fntpb 7094 xpexr 7774 frxp 7976 suppimacnv 7999 fodomr 8924 wdompwdom 9346 en3lp 9381 inf3lemd 9394 prdom2 9771 iunfictbso 9879 infpssrlem4 10071 1re 10984 dedekindle 11148 00id 11159 nn0lt2 12392 nn01to3 12690 ioorebas 13192 fzfi 13701 ssnn0fi 13714 hash2prde 14193 repswsymballbi 14502 cshw0 14516 cshwmodn 14517 cshwsublen 14518 cshwn 14519 cshwlen 14521 cshwidx0 14528 dmtrclfv 14738 cncongr2 16382 cshwsidrepswmod0 16805 cshwshashlem1 16806 cshwshashlem2 16807 cshwsdisj 16809 cntzssv 18943 psgnunilem4 19114 sdrgacs 20078 mulmarep1gsum2 21732 plyssc 25370 cxpsqrtth 25893 addsqnreup 26600 2sqreultlem 26604 2sqreunnltlem 26607 axsegcon 27304 axpaschlem 27317 axlowdimlem16 27334 axcontlem7 27347 axcontlem8 27348 axcontlem12 27352 umgrislfupgrlem 27501 edglnl 27522 uhgr2edg 27584 1egrvtxdg0 27887 uspgrn2crct 28182 2pthon3v 28317 clwwlknon0 28466 1pthon2v 28526 1to3vfriswmgr 28653 frgrnbnb 28666 numclwwlk5 28761 siii 29224 h1de2ctlem 29926 riesz3i 30433 unierri 30475 dya2iocuni 32259 sibf0 32310 bnj1143 32779 bnj571 32895 bnj594 32901 bnj852 32910 noresle 33909 cgrextend 34319 ifscgr 34355 idinside 34395 btwnconn1lem12 34409 btwnconn1 34412 linethru 34464 bj-xpnzex 35158 ovoliunnfl 35828 voliunnfl 35830 volsupnfl 35831 sn-1ne2 40302 ax6e2ndeq 42186 lighneal 45074 nrhmzr 45442 zlmodzxznm 45849 itsclc0yqe 46118 |
Copyright terms: Public domain | W3C validator |