![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2945 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: pm2.61ne 3028 pm2.61dne 3029 pm2.61iine 3033 raaan 4521 raaanv 4522 iinrab2 5074 iinvdif 5084 riinrab 5088 reusv2lem2 5398 po2ne 5605 xpriindi 5837 dmxpid 5930 dmxpss 6171 rnxpid 6173 cnvpo 6287 xpcoid 6290 dfpo2 6296 fnprb 7210 fntpb 7211 xpexr 7909 frxp 8112 suppimacnv 8159 fodomr 9128 wdompwdom 9573 en3lp 9609 inf3lemd 9622 prdom2 10001 iunfictbso 10109 infpssrlem4 10301 1re 11214 dedekindle 11378 00id 11389 nn0lt2 12625 nn01to3 12925 ioorebas 13428 fzfi 13937 ssnn0fi 13950 hash2prde 14431 repswsymballbi 14730 cshw0 14744 cshwmodn 14745 cshwsublen 14746 cshwn 14747 cshwlen 14749 cshwidx0 14756 dmtrclfv 14965 cncongr2 16605 cshwsidrepswmod0 17028 cshwshashlem1 17029 cshwshashlem2 17030 cshwsdisj 17032 cntzssv 19192 psgnunilem4 19365 sdrgacs 20417 mulmarep1gsum2 22076 plyssc 25714 cxpsqrtth 26238 addsqnreup 26946 2sqreultlem 26950 2sqreunnltlem 26953 noresle 27200 axsegcon 28185 axpaschlem 28198 axlowdimlem16 28215 axcontlem7 28228 axcontlem8 28229 axcontlem12 28233 umgrislfupgrlem 28382 edglnl 28403 uhgr2edg 28465 1egrvtxdg0 28768 uspgrn2crct 29062 2pthon3v 29197 clwwlknon0 29346 1pthon2v 29406 1to3vfriswmgr 29533 frgrnbnb 29546 numclwwlk5 29641 siii 30106 h1de2ctlem 30808 riesz3i 31315 unierri 31357 dya2iocuni 33282 sibf0 33333 bnj1143 33801 bnj571 33917 bnj594 33923 bnj852 33932 cgrextend 34980 ifscgr 35016 idinside 35056 btwnconn1lem12 35070 btwnconn1 35073 linethru 35125 bj-xpnzex 35840 ovoliunnfl 36530 voliunnfl 36532 volsupnfl 36533 sn-1ne2 41179 cantnfresb 42074 ax6e2ndeq 43320 lighneal 46279 nrhmzr 46647 zlmodzxznm 47178 itsclc0yqe 47447 |
Copyright terms: Public domain | W3C validator |