![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2944 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: pm2.61ne 3027 pm2.61dne 3028 pm2.61iine 3032 raaan 4520 raaanv 4521 iinrab2 5073 iinvdif 5083 riinrab 5087 reusv2lem2 5397 po2ne 5604 xpriindi 5836 dmxpid 5929 dmxpss 6170 rnxpid 6172 cnvpo 6286 xpcoid 6289 dfpo2 6295 fnprb 7212 fntpb 7213 xpexr 7911 frxp 8114 suppimacnv 8161 fodomr 9130 wdompwdom 9575 en3lp 9611 inf3lemd 9624 prdom2 10003 iunfictbso 10111 infpssrlem4 10303 1re 11216 dedekindle 11380 00id 11391 nn0lt2 12627 nn01to3 12927 ioorebas 13430 fzfi 13939 ssnn0fi 13952 hash2prde 14433 repswsymballbi 14732 cshw0 14746 cshwmodn 14747 cshwsublen 14748 cshwn 14749 cshwlen 14751 cshwidx0 14758 dmtrclfv 14967 cncongr2 16607 cshwsidrepswmod0 17030 cshwshashlem1 17031 cshwshashlem2 17032 cshwsdisj 17034 cntzssv 19194 psgnunilem4 19367 sdrgacs 20421 mulmarep1gsum2 22083 plyssc 25721 cxpsqrtth 26245 addsqnreup 26953 2sqreultlem 26957 2sqreunnltlem 26960 noresle 27207 axsegcon 28223 axpaschlem 28236 axlowdimlem16 28253 axcontlem7 28266 axcontlem8 28267 axcontlem12 28271 umgrislfupgrlem 28420 edglnl 28441 uhgr2edg 28503 1egrvtxdg0 28806 uspgrn2crct 29100 2pthon3v 29235 clwwlknon0 29384 1pthon2v 29444 1to3vfriswmgr 29571 frgrnbnb 29584 numclwwlk5 29679 siii 30144 h1de2ctlem 30846 riesz3i 31353 unierri 31395 dya2iocuni 33351 sibf0 33402 bnj1143 33870 bnj571 33986 bnj594 33992 bnj852 34001 cgrextend 35049 ifscgr 35085 idinside 35125 btwnconn1lem12 35139 btwnconn1 35142 linethru 35194 bj-xpnzex 35926 ovoliunnfl 36616 voliunnfl 36618 volsupnfl 36619 sn-1ne2 41261 cantnfresb 42156 ax6e2ndeq 43402 lighneal 46358 nrhmzr 46726 zlmodzxznm 47256 itsclc0yqe 47525 |
Copyright terms: Public domain | W3C validator |