![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2950 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 217 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: pm2.61ne 3033 pm2.61dne 3034 pm2.61iine 3038 raaan 4540 raaanv 4541 iinrab2 5093 iinvdif 5103 riinrab 5107 reusv2lem2 5417 po2ne 5624 xpriindi 5861 dmxpid 5955 dmxpss 6202 rnxpid 6204 cnvpo 6318 xpcoid 6321 dfpo2 6327 fnprb 7245 fntpb 7246 xpexr 7958 frxp 8167 suppimacnv 8215 fodomr 9194 fodomfir 9396 wdompwdom 9647 en3lp 9683 inf3lemd 9696 prdom2 10075 iunfictbso 10183 infpssrlem4 10375 1re 11290 dedekindle 11454 00id 11465 nn0lt2 12706 nn01to3 13006 ioorebas 13511 fzfi 14023 ssnn0fi 14036 hash2prde 14519 repswsymballbi 14828 cshw0 14842 cshwmodn 14843 cshwsublen 14844 cshwn 14845 cshwlen 14847 cshwidx0 14854 dmtrclfv 15067 cncongr2 16715 cshwsidrepswmod0 17142 cshwshashlem1 17143 cshwshashlem2 17144 cshwsdisj 17146 cntzssv 19368 psgnunilem4 19539 nrhmzr 20563 sdrgacs 20824 mulmarep1gsum2 22601 plyssc 26259 cxpsqrtth 26790 addsqnreup 27505 2sqreultlem 27509 2sqreunnltlem 27512 noresle 27760 axsegcon 28960 axpaschlem 28973 axlowdimlem16 28990 axcontlem7 29003 axcontlem8 29004 axcontlem12 29008 umgrislfupgrlem 29157 edglnl 29178 uhgr2edg 29243 1egrvtxdg0 29547 uspgrn2crct 29841 2pthon3v 29976 clwwlknon0 30125 1pthon2v 30185 1to3vfriswmgr 30312 frgrnbnb 30325 numclwwlk5 30420 siii 30885 h1de2ctlem 31587 riesz3i 32094 unierri 32136 dya2iocuni 34248 sibf0 34299 bnj1143 34766 bnj571 34882 bnj594 34888 bnj852 34897 cgrextend 35972 ifscgr 36008 idinside 36048 btwnconn1lem12 36062 btwnconn1 36065 linethru 36117 bj-xpnzex 36925 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 sn-1ne2 42254 cantnfresb 43286 ax6e2ndeq 44530 lighneal 47485 dfclnbgr6 47728 dfsclnbgr6 47730 zlmodzxznm 48226 itsclc0yqe 48495 |
Copyright terms: Public domain | W3C validator |