Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Structured version Visualization version GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
pm2.61ine.2 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
2 | nne 2946 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | pm2.61ine.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 → 𝜑) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: pm2.61ne 3029 pm2.61dne 3030 pm2.61iine 3034 raaan 4448 raaanv 4449 iinrab2 4995 iinvdif 5005 riinrab 5009 reusv2lem2 5317 po2ne 5510 xpriindi 5734 dmxpid 5828 dmxpss 6063 rnxpid 6065 cnvpo 6179 xpcoid 6182 dfpo2 6188 fnprb 7066 fntpb 7067 xpexr 7739 frxp 7938 suppimacnv 7961 fodomr 8864 wdompwdom 9267 en3lp 9302 inf3lemd 9315 prdom2 9693 iunfictbso 9801 infpssrlem4 9993 1re 10906 dedekindle 11069 00id 11080 nn0lt2 12313 nn01to3 12610 ioorebas 13112 fzfi 13620 ssnn0fi 13633 hash2prde 14112 repswsymballbi 14421 cshw0 14435 cshwmodn 14436 cshwsublen 14437 cshwn 14438 cshwlen 14440 cshwidx0 14447 dmtrclfv 14657 cncongr2 16301 cshwsidrepswmod0 16724 cshwshashlem1 16725 cshwshashlem2 16726 cshwsdisj 16728 cntzssv 18849 psgnunilem4 19020 sdrgacs 19984 mulmarep1gsum2 21631 plyssc 25266 cxpsqrtth 25789 addsqnreup 26496 2sqreultlem 26500 2sqreunnltlem 26503 axsegcon 27198 axpaschlem 27211 axlowdimlem16 27228 axcontlem7 27241 axcontlem8 27242 axcontlem12 27246 umgrislfupgrlem 27395 edglnl 27416 uhgr2edg 27478 1egrvtxdg0 27781 uspgrn2crct 28074 2pthon3v 28209 clwwlknon0 28358 1pthon2v 28418 1to3vfriswmgr 28545 frgrnbnb 28558 numclwwlk5 28653 siii 29116 h1de2ctlem 29818 riesz3i 30325 unierri 30367 dya2iocuni 32150 sibf0 32201 bnj1143 32670 bnj571 32786 bnj594 32792 bnj852 32801 noresle 33827 cgrextend 34237 ifscgr 34273 idinside 34313 btwnconn1lem12 34327 btwnconn1 34330 linethru 34382 bj-xpnzex 35076 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 sn-1ne2 40216 ax6e2ndeq 42068 lighneal 44951 nrhmzr 45319 zlmodzxznm 45726 itsclc0yqe 45995 |
Copyright terms: Public domain | W3C validator |