MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.3 Structured version   Visualization version   GIF version

Theorem pm2.3 921
Description: Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.3 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜒𝜓)))

Proof of Theorem pm2.3
StepHypRef Expression
1 pm1.4 865 . 2 ((𝜓𝜒) → (𝜒𝜓))
21orim2i 907 1 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  meran1  34527  meran3  34529
  Copyright terms: Public domain W3C validator