Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  or32 Structured version   Visualization version   GIF version

Theorem or32 923
 Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
or32 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ 𝜓))

Proof of Theorem or32
StepHypRef Expression
1 orass 919 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
2 or12 918 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))
3 orcom 867 . 2 ((𝜓 ∨ (𝜑𝜒)) ↔ ((𝜑𝜒) ∨ 𝜓))
41, 2, 33bitri 300 1 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-or 845 This theorem is referenced by:  sspsstri  4008  somo  5479  psslinpr  10491  xrnepnf  12554  xrinfmss  12744  tosso  17712  satfvsucsuc  32843  lineunray  34020  or32dd  35834
 Copyright terms: Public domain W3C validator