| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > or32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| or32 | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orass 922 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 2 | or12 921 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 3 | orcom 871 | . 2 ⊢ ((𝜓 ∨ (𝜑 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitri 297 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: sspsstri 4105 somo 5631 psslinpr 11071 xrnepnf 13160 xrinfmss 13352 tosso 18464 mulsproplem13 28154 mulsproplem14 28155 satfvsucsuc 35370 lineunray 36148 or32dd 38101 |
| Copyright terms: Public domain | W3C validator |