MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  or32 Structured version   Visualization version   GIF version

Theorem or32 923
Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
or32 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ 𝜓))

Proof of Theorem or32
StepHypRef Expression
1 orass 919 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
2 or12 918 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))
3 orcom 867 . 2 ((𝜓 ∨ (𝜑𝜒)) ↔ ((𝜑𝜒) ∨ 𝜓))
41, 2, 33bitri 297 1 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  sspsstri  4037  somo  5540  psslinpr  10787  xrnepnf  12854  xrinfmss  13044  tosso  18137  satfvsucsuc  33327  lineunray  34449  or32dd  36252
  Copyright terms: Public domain W3C validator