MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.4 Structured version   Visualization version   GIF version

Theorem pm1.4 869
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.4 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 868 . 2 (𝜑 → (𝜓𝜑))
2 orc 867 . 2 (𝜓 → (𝜓𝜑))
31, 2jaoi 857 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orcom  870  orcoms  872  pm2.3  924  pm2.36  971  pm2.37  972  rb-ax2  1750  prneimg  4859  cnf2dd  38078  orcomdd  38154  rp-fakeanorass  43503  orbi1rVD  44846  itsclc0yqsol  48614
  Copyright terms: Public domain W3C validator