Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm1.4 | Structured version Visualization version GIF version |
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm1.4 | ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 864 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
2 | orc 863 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
3 | 1, 2 | jaoi 853 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orcom 866 orcoms 868 pm2.3 921 pm2.36 966 pm2.37 967 rb-ax2 1757 prneimg 4782 cnf2dd 36176 orcomdd 36252 rp-fakeanorass 41018 orbi1rVD 42357 itsclc0yqsol 45998 |
Copyright terms: Public domain | W3C validator |